Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941480

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) and T cell lymphoblastic lymphoma (T-LBL) are rare aggressive hematological malignancies. Current treatment consists of intensive chemotherapy, leading to 80% overall survival but are associated with severe toxic side effects. Furthermore, 10-20% of patients still die from relapsed or refractory disease providing a strong rationale for more specific, targeted therapeutic strategies with less toxicities. Here, we report a novel MYH9::PDGFRB fusion in a T-LBL patient and demonstrate that this fusion product is constitutively active and sufficient to drive oncogenic transformation in vitro and in vivo. Expanding our analysis more broadly across T-ALL, we found a T-ALL cell line and multiple patient derived xenograft models with PDGFRB hyperactivation in the absence of a fusion, with high PDGFRB expression in TLX3 and HOXA T-ALL molecular subtypes. To target this PDGFRB hyperactivation, we evaluated the therapeutic effects of a selective PDGFRB inhibitor, CP-673451, both in vitro and in vivo and demonstrated sensitivity if the receptor is hyperactivated. Altogether, our work reveals that hyperactivation of PDGFRB is an oncogenic driver in T-ALL/T-LBL and that screening T-ALL/TLBL patients for phosphorylated PDGFRB levels can serve as a biomarker for PDGFRB inhibition as a novel targeted therapeutic strategy in their treatment regimen.

2.
Development ; 146(21)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31601548

RESUMO

A switch from E- to N-cadherin regulates the transition from pluripotency to neural identity, but the mechanism by which cadherins regulate differentiation was previously unknown. Here, we show that the acquisition of N-cadherin stabilises neural identity by dampening anti-neural signals. We use quantitative image analysis to show that N-cadherin promotes neural differentiation independently of its effects on cell cohesiveness. We reveal that cadherin switching diminishes the level of nuclear ß-catenin, and that N-cadherin also dampens FGF activity and consequently stabilises neural fate. Finally, we compare the timing of cadherin switching and differentiation in vivo and in vitro, and find that this process becomes dysregulated during in vitro differentiation. We propose that N-cadherin helps to propagate a stable neural identity throughout the emerging neuroepithelium, and that dysregulation of this process contributes to asynchronous differentiation in culture.


Assuntos
Caderinas/fisiologia , Células-Tronco Embrionárias/citologia , Neurônios/citologia , beta Catenina/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Núcleo Celular/fisiologia , Células Cultivadas , Fatores de Crescimento de Fibroblastos/fisiologia , Camadas Germinativas/fisiologia , Camundongos , Camundongos Transgênicos , Células-Tronco Pluripotentes/citologia
3.
Genes Chromosomes Cancer ; 60(7): 482-488, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33611795

RESUMO

We investigated MYB rearrangements (MYB-R) and the levels of MYB expression, in 331 pediatric and adult patients with T-cell acute lymphoblastic leukemia (T-ALL). MYB-R were detected in 17 cases and consisted of MYB tandem duplication (tdup) (= 14) or T cell receptor beta locus (TRB)-MYB (= 3). As previously reported, TRB-MYB was found only in children (1.6%) while MYB tdup occurred in both age groups, although it was slightly more frequent in children (5.2% vs 2.8%). Shared features of MYB-R T-ALL were a non-early T-cell precursor (ETP) phenotype, a high incidence of NOTCH1/FBXW7 mutations (81%) and CDKN2AB deletions (70.5%). Moreover, they mainly belonged to HOXA (=8), NKX2-1/2-2/TLX1 (=4), and TLX3 (=3) homeobox-related subgroups. Overall, MYB-R cases had significantly higher levels of MYB expression than MYB wild type (MYB-wt) cases, although high levels of MYB were detected in ~ 30% of MYB-wt T-ALL. Consistent with the transcriptional regulatory networks, cases with high MYB expression were significantly enriched within the TAL/LMO subgroup (P = .017). Interestingly, analysis of paired diagnosis/remission samples demonstrated that a high MYB expression was restricted to the leukemic clone. Our study has indicated that different mechanisms underlie MYB deregulation in 30%-40% of T-ALL and highlighted that, MYB has potential as predictive/prognostic marker and/or target for tailored therapy.


Assuntos
Biomarcadores Tumorais/genética , Duplicação Gênica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-myb/genética , Adolescente , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Regulação para Baixo , Proteína 7 com Repetições F-Box-WD/genética , Feminino , Proteína Homeobox Nkx-2.2/genética , Proteínas de Homeodomínio/genética , Humanos , Lactente , Masculino , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Receptor Notch1/genética , Fator Nuclear 1 de Tireoide/genética
4.
BMC Dev Biol ; 20(1): 17, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32741376

RESUMO

BACKGROUND: p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported. RESULTS: We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctnfl/fl;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and ß-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, ß-catenin or cortactin. CONCLUSIONS: These results indicate that p120ctn is required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.


Assuntos
Cateninas/metabolismo , Proteína Wnt1/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Cateninas/genética , Adesão Celular/genética , Adesão Celular/fisiologia , Camundongos , Camundongos Knockout , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteína Wnt1/genética , beta Catenina/genética , beta Catenina/metabolismo
5.
Blood ; 131(1): 95-107, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29084774

RESUMO

Mixed lineage leukemia (MLL) represents a genetically distinct and aggressive subset of human acute leukemia carrying chromosomal translocations of the MLL gene. These translocations result in oncogenic fusions that mediate aberrant recruitment of the transcription machinery to MLL target genes. The N-terminus of MLL and MLL-fusions form a complex with lens epithelium-derived growth factor (LEDGF/p75; encoded by the PSIP1 gene) and MENIN. This complex contributes to the association of MLL and MLL-fusion multiprotein complexes with the chromatin. Several studies have shown that both MENIN and LEDGF/p75 are required for efficient MLL-fusion-mediated transformation and for the expression of downstream MLL-regulated genes such as HOXA9 and MEIS1 In light of developing a therapeutic strategy targeting this complex, understanding the function of LEDGF/p75 in normal hematopoiesis is crucial. We generated a conditional Psip1 knockout mouse model in the hematopoietic compartment and examined the effects of LEDGF/p75 depletion in postnatal hematopoiesis and the initiation of MLL leukemogenesis. Psip1 knockout mice were viable but showed several defects in hematopoiesis, reduced colony-forming activity in vitro, decreased expression of Hox genes in the hematopoietic stem cells, and decreased MLL occupancy at MLL target genes. Finally, in vitro and in vivo experiments showed that LEDGF/p75 is dispensable for steady-state hematopoiesis but essential for the initiation of MLL-mediated leukemia. These data corroborate the MLL-LEDGF/p75 interaction as novel target for the treatment of MLL-rearranged leukemia.


Assuntos
Hematopoese/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Leucemia Experimental/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Leucemia Experimental/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Fatores de Transcrição/fisiologia
6.
Blood ; 129(4): 460-472, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-27683414

RESUMO

Epithelial-to-mesenchymal-transition (EMT) is critical for normal embryogenesis and effective postnatal wound healing, but is also associated with cancer metastasis. SNAIL, ZEB, and TWIST families of transcription factors are key modulators of the EMT process, but their precise roles in adult hematopoietic development and homeostasis remain unclear. Here we report that genetic inactivation of Zeb2 results in increased frequency of stem and progenitor subpopulations within the bone marrow (BM) and spleen and that these changes accompany differentiation defects in multiple hematopoietic cell lineages. We found no evidence that Zeb2 is critical for hematopoietic stem cell self-renewal capacity. However, knocking out Zeb2 in the BM promoted a phenotype with several features that resemble human myeloproliferative disorders, such as BM fibrosis, splenomegaly, and extramedullary hematopoiesis. Global gene expression and intracellular signal transduction analysis revealed perturbations in specific cytokine and cytokine receptor-related signaling pathways following Zeb2 loss, especially the JAK-STAT and extracellular signal-regulated kinase pathways. Moreover, we detected some previously unknown mutations within the human Zeb2 gene (ZFX1B locus) from patients with myeloid disease. Collectively, our results demonstrate that Zeb2 controls adult hematopoietic differentiation and lineage fidelity through widespread modulation of dominant signaling pathways that may contribute to blood disorders.


Assuntos
Citocinas/genética , Transição Epitelial-Mesenquimal/genética , Hematopoese Extramedular/genética , Proteínas de Homeodomínio/genética , Mielofibrose Primária/genética , Proteínas Repressoras/genética , Esplenomegalia/genética , Adulto , Animais , Sequência de Bases , Medula Óssea/metabolismo , Medula Óssea/patologia , Diferenciação Celular , Linhagem da Célula/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Proteínas Repressoras/deficiência , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Baço/metabolismo , Baço/patologia , Esplenomegalia/metabolismo , Esplenomegalia/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Transcrição Gênica , Homeobox 2 de Ligação a E-box com Dedos de Zinco
7.
PLoS Genet ; 12(8): e1006243, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27556156

RESUMO

E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment.


Assuntos
Caderinas/genética , Cateninas/genética , Diferenciação Celular/genética , Endoderma/crescimento & desenvolvimento , Células-Tronco Embrionárias Murinas , Animais , Blastocisto/metabolismo , Caderinas/biossíntese , Cateninas/biossíntese , Adesão Celular/genética , Linhagem da Célula/genética , Polaridade Celular/genética , Corpos Embrioides/metabolismo , Desenvolvimento Embrionário/genética , Endoderma/metabolismo , Humanos , Camundongos , Imagem Óptica , Células-Tronco Pluripotentes/metabolismo , Proteína rhoA de Ligação ao GTP/biossíntese , Proteína rhoA de Ligação ao GTP/genética , delta Catenina
8.
Stem Cells ; 35(3): 611-625, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27739137

RESUMO

In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell-fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA-sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naïve state. However, most cells in these EBs stall in an early epiblast-like state and are impaired in both neural and mesendodermal differentiation. Genes involved in pluripotency, epithelial-to-mesenchymal transition (EMT), and DNA-(de)methylation, including Tet1, are deregulated in the absence of Zeb2. The observed elevated Tet1 levels in the mutant cells and the knowledge of previously mapped Tet1-binding sites correlate with loss-of-methylation in neural-stimulating conditions, however, after the cells initially acquired the correct DNA-methyl marks. Interestingly, cells from such Zeb2 KO EBs maintain the ability to re-adapt to 2i + LIF conditions even after prolonged differentiation, while knockdown of Tet1 partially rescues their impaired differentiation. Hence, in addition to its role in EMT, Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA-methylation with irreversible commitment to differentiation. Stem Cells 2017;35:611-625.


Assuntos
Linhagem da Célula , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Diferenciação Celular , Metilação de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Camundongos , Camundongos Knockout , Neurônios/citologia , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Análise de Componente Principal , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Análise de Sequência de RNA , Transcrição Gênica
9.
Blood ; 125(1): 13-21, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25320243

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia that is mainly diagnosed in children and shows a skewed gender distribution toward males. In this study, we report somatic loss-of-function mutations in the X-linked histone H3K27me3 demethylase ubiquitously transcribed X (UTX) chromosome, in human T-ALL. Interestingly, UTX mutations were exclusively present in male T-ALL patients and allelic expression analysis revealed that UTX escapes X-inactivation in female T-ALL lymphoblasts and normal T cells. Notably, we demonstrate in vitro and in vivo that the H3K27me3 demethylase UTX functions as a bona fide tumor suppressor in T-ALL. Moreover, T-ALL driven by UTX inactivation exhibits collateral sensitivity to pharmacologic H3K27me3 inhibition. All together, our results show how a gender-specific and therapeutically relevant defect in balancing H3K27 methylation contributes to T-cell leukemogenesis.


Assuntos
Regulação Leucêmica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Alelos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Estudos de Coortes , Metilação de DNA , Epigênese Genética , Feminino , Histonas/química , Humanos , Imunofenotipagem , Interleucinas/metabolismo , Masculino , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais , Linfócitos T/citologia
11.
J Cell Sci ; 127(Pt 12): 2603-13, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24931943

RESUMO

Pluripotent embryonic stem cells (ESCs) can self-renew or differentiate into any cell type within an organism. Here, we focus on the roles of cadherins and catenins - their cytoplasmic scaffold proteins - in the fate, maintenance and differentiation of mammalian ESCs. E-cadherin is a master stem cell regulator that is required for both mouse ESC (mESC) maintenance and differentiation. E-cadherin interacts with key components of the naive stemness pathway and ablating it prevents stem cells from forming well-differentiated teratomas or contributing to chimeric animals. In addition, depleting E-cadherin converts naive mouse ESCs into primed epiblast-like stem cells (EpiSCs). In line with this, a mesenchymal-to-epithelial transition (MET) occurs during reprogramming of somatic cells towards induced pluripotent stem cells (iPSCs), leading to downregulation of N-cadherin and acquisition of high E-cadherin levels. ß-catenin exerts a dual function; it acts in cadherin-based adhesion and in WNT signaling and, although WNT signaling is important for stemness, the adhesive function of ß-catenin might be crucial for maintaining the naive state of stem cells. In addition, evidence is rising that other junctional proteins are also important in ESC biology. Thus, precisely regulated levels and activities of several junctional proteins, in particular E-cadherin, safeguard naive pluripotency and are a prerequisite for complete somatic cell reprogramming.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células-Tronco Embrionárias/fisiologia , Junções Intercelulares/fisiologia , Animais , Cateninas/fisiologia , Adesão Celular , Diferenciação Celular , Proliferação de Células , Humanos
13.
Oncogene ; 43(3): 155-170, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985676

RESUMO

Thyroid cancer is the most common endocrine malignancy and several genetic events have been described to promote the development of thyroid carcinogenesis. Besides the effects of specific mutations on thyroid cancer development, the molecular mechanisms controlling tumorigenesis, tumor behavior, and drug resistance are still largely unknown. Cancer organoids have been proposed as a powerful tool to study aspects related to tumor development and progression and appear promising to test individual responses to therapies. Here, using mESC-derived thyroid organoids, we developed a BrafV637E-inducible model able to recapitulate the features of papillary thyroid cancer in vitro. Overexpression of the murine BrafV637E mutation, equivalent to BrafV600E in humans, rapidly triggers to MAPK activation, cell dedifferentiation, and disruption of follicular organization. BrafV637E-expressing organoids show a transcriptomic signature for p53, focal adhesion, ECM-receptor interactions, EMT, and inflammatory signaling pathways. Finally, PTC-like thyroid organoids were used for drug screening assays. The combination of MAPK and PI3K inhibitors reversed BrafV637E oncogene-promoted cell dedifferentiation while restoring thyroid follicle organization and function in vitro. Our results demonstrate that pluripotent stem cells-derived thyroid cancer organoids can mimic tumor development and features while providing an efficient tool for testing novel targeted therapies.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Neoplasias da Glândula Tireoide , Animais , Camundongos , Carcinogênese , Mutação , Organoides/patologia , Fosfatidilinositol 3-Quinases/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
14.
Hemasphere ; 8(3): e51, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463444

RESUMO

T-lineage acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that accounts for 10%-15% of pediatric and 25% of adult ALL cases. Although the prognosis of T-ALL has improved over time, the outcome of T-ALL patients with primary resistant or relapsed leukemia remains poor. Therefore, further progress in the treatment of T-ALL requires a better understanding of its biology and the development of more effective precision oncologic therapies. The proto-oncogene MYB is highly expressed in diverse hematologic malignancies, including T-ALLs with genomic aberrations that further potentiate its expression and activity. Previous studies have associated MYB with a malignant role in the pathogenesis of several cancers. However, its role in the induction and maintenance of T-ALL remains relatively poorly understood. In this study, we found that an increased copy number of MYB is associated with higher MYB expression levels, and might be associated with inferior event-free survival of pediatric T-ALL patients. Using our previously described conditional Myb overexpression mice, we generated two distinct MYB-driven T-ALL mouse models. We demonstrated that the overexpression of Myb synergizes with Pten deletion but not with the overexpression of Lmo2 to accelerate the development of T-cell lymphoblastic leukemias. We also showed that MYB is a dependency factor in T-ALL since RNA interference of Myb blocked cell cycle progression and induced apoptosis in both human and murine T-ALL cell lines. Finally, we provide preclinical evidence that targeting the transcriptional activity of MYB can be a useful therapeutic strategy for the treatment of T-ALL.

15.
Hemasphere ; 7(7): e916, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37359189

RESUMO

Glucocorticoids are extensively used for the treatment of acute lymphoblastic leukemia as they pressure cancer cells to undergo apoptosis. Nevertheless, glucocorticoid partners, modifications, and mechanisms of action are hitherto poorly characterized. This hampers our understanding of therapy resistance, frequently occurring in leukemia despite the current therapeutic combinations using glucocorticoids in acute lymphoblastic leukemia. In this review, we initially cover the traditional view of glucocorticoid resistance and ways of targeting this resistance. We discuss recent progress in our understanding of chromatin and posttranslational properties of the glucocorticoid receptor that might be proven beneficial in our efforts to understand and target therapy resistance. We discuss emerging roles of pathways and proteins such as the lymphocyte-specific kinase that antagonizes glucocorticoid receptor activation and nuclear translocation. In addition, we provide an overview of ongoing therapeutic approaches that sensitize cells to glucocorticoids including small molecule inhibitors and proteolysis-targeting chimeras.

16.
Leukemia ; 37(12): 2404-2413, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37794102

RESUMO

CRISPR-mediated simultaneous targeting of candidate tumor suppressor genes in Xenopus tropicalis allows fast functional assessment of co-driver genes for various solid tumors. Genotyping of tumors that emerge in the mosaic mutant animals rapidly exposes the gene mutations under positive selection for tumor establishment. However, applying this simple approach to the blood lineage has not been attempted. Multiple hematologic malignancies have mutations in EZH2, encoding the catalytic subunit of the Polycomb Repressive Complex 2. Interestingly, EZH2 can act as an oncogene or a tumor suppressor, depending on cellular context and disease stage. We show here that mosaic CRISPR/Cas9 mediated ezh2 disruption in the blood lineage resulted in early and penetrant acute myeloid leukemia (AML) induction. While animals were co-targeted with an sgRNA that induces notch1 gain-of-function mutations, sequencing of leukemias revealed positive selection towards biallelic ezh2 mutations regardless of notch1 mutational status. Co-targeting dnm2, recurrently mutated in T/ETP-ALL, induced a switch from myeloid towards acute T-cell leukemia. Both myeloid and T-cell leukemias engrafted in immunocompromised hosts. These data underline the potential of Xenopus tropicalis for modeling human leukemia, where mosaic gene disruption, combined with deep amplicon sequencing of the targeted genomic regions, can rapidly and efficiently expose co-operating driver gene mutations.


Assuntos
Leucemia Mieloide Aguda , RNA Guia de Sistemas CRISPR-Cas , Animais , Humanos , Histona Metiltransferases/genética , Xenopus/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Mutação
17.
Nat Commun ; 14(1): 1267, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882421

RESUMO

The pediatric extra-cranial tumor neuroblastoma displays a low mutational burden while recurrent copy number alterations are present in most high-risk cases. Here, we identify SOX11 as a dependency transcription factor in adrenergic neuroblastoma based on recurrent chromosome 2p focal gains and amplifications, specific expression in the normal sympatho-adrenal lineage and adrenergic neuroblastoma, regulation by multiple adrenergic specific (super-)enhancers and strong dependency on high SOX11 expression in adrenergic neuroblastomas. SOX11 regulated direct targets include genes implicated in epigenetic control, cytoskeleton and neurodevelopment. Most notably, SOX11 controls chromatin regulatory complexes, including 10 SWI/SNF core components among which SMARCC1, SMARCA4/BRG1 and ARID1A. Additionally, the histone deacetylase HDAC2, PRC1 complex component CBX2, chromatin-modifying enzyme KDM1A/LSD1 and pioneer factor c-MYB are regulated by SOX11. Finally, SOX11 is identified as a core transcription factor of the core regulatory circuitry (CRC) in adrenergic high-risk neuroblastoma with a potential role as epigenetic master regulator upstream of the CRC.


Assuntos
Neuroblastoma , Humanos , Criança , Neuroblastoma/genética , Fatores de Transcrição/genética , Cromatina , Núcleo Celular , Aberrações Cromossômicas , Adrenérgicos , DNA Helicases , Proteínas Nucleares/genética , Fatores de Transcrição SOXC/genética , Histona Desmetilases
18.
Sci Adv ; 8(49): eabq8437, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490346

RESUMO

Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Linhagem Celular Tumoral , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/uso terapêutico , Peptidase 7 Específica de Ubiquitina/metabolismo
20.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771865

RESUMO

The therapeutic scope of antibody and nonantibody protein scaffolds is still prohibitively limited against intracellular drug targets. Here, we demonstrate that the Alphabody scaffold can be engineered into a cell-penetrating protein antagonist against induced myeloid leukemia cell differentiation protein MCL-1, an intracellular target in cancer, by grafting the critical B-cell lymphoma 2 homology 3 helix of MCL-1 onto the Alphabody and tagging the scaffold's termini with designed cell-penetration polypeptides. Introduction of an albumin-binding moiety extended the serum half-life of the engineered Alphabody to therapeutically relevant levels, and administration thereof in mouse tumor xenografts based on myeloma cell lines reduced tumor burden. Crystal structures of such a designed Alphabody in complex with MCL-1 and serum albumin provided the structural blueprint of the applied design principles. Collectively, we provide proof of concept for the use of Alphabodies against intracellular disease mediators, which, to date, have remained in the realm of small-molecule therapeutics.


Assuntos
Neoplasias , Peptídeos , Animais , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA