Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neuron ; 112(3): 342-361, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37967561

RESUMO

Physical forces are ubiquitous in biological processes across scales and diverse contexts. This review highlights the significance of mechanical forces in nervous system development, homeostasis, and disease. We provide an overview of mechanical signals present in the nervous system and delve into mechanotransduction mechanisms translating these mechanical cues into biochemical signals. During development, mechanical cues regulate a plethora of processes, including cell proliferation, differentiation, migration, network formation, and cortex folding. Forces then continue exerting their influence on physiological processes, such as neuronal activity, glial cell function, and the interplay between these different cell types. Notably, changes in tissue mechanics manifest in neurodegenerative diseases and brain tumors, potentially offering new diagnostic and therapeutic target opportunities. Understanding the role of cellular forces and tissue mechanics in nervous system physiology and pathology adds a new facet to neurobiology, shedding new light on many processes that remain incompletely understood.


Assuntos
Mecanotransdução Celular , Fenômenos Fisiológicos do Sistema Nervoso , Mecanotransdução Celular/fisiologia , Sistema Nervoso , Homeostase , Diferenciação Celular
2.
PNAS Nexus ; 2(1): pgac299, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36733291

RESUMO

Most animal cells are surrounded by a cell membrane and an underlying actomyosin cortex. Both structures are linked, and they are under tension. In-plane membrane tension and cortical tension both influence many cellular processes, including cell migration, division, and endocytosis. However, while actomyosin tension is regulated by substrate stiffness, how membrane tension responds to mechanical substrate properties is currently poorly understood. Here, we probed the effective membrane tension of neurons and fibroblasts cultured on glass and polyacrylamide substrates of varying stiffness using optical tweezers. In contrast to actomyosin-based traction forces, both peak forces and steady-state tether forces of cells cultured on hydrogels were independent of substrate stiffness and did not change after blocking myosin II activity using blebbistatin, indicating that tether and traction forces are not directly linked. Peak forces in fibroblasts on hydrogels were about twice as high as those in neurons, indicating stronger membrane-cortex adhesion in fibroblasts. Steady-state tether forces were generally higher in cells cultured on hydrogels than on glass, which we explain by a mechanical model. Our results provide new insights into the complex regulation of effective membrane tension and pave the way for a deeper understanding of the biological processes it instructs.

3.
Elife ; 82019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642430

RESUMO

Tissue mechanics is important for development; however, the spatio-temporal dynamics of in vivo tissue stiffness is still poorly understood. We here developed tiv-AFM, combining time-lapse in vivo atomic force microscopy with upright fluorescence imaging of embryonic tissue, to show that during development local tissue stiffness changes significantly within tens of minutes. Within this time frame, a stiffness gradient arose in the developing Xenopus brain, and retinal ganglion cell axons turned to follow this gradient. Changes in local tissue stiffness were largely governed by cell proliferation, as perturbation of mitosis diminished both the stiffness gradient and the caudal turn of axons found in control brains. Hence, we identified a close relationship between the dynamics of tissue mechanics and developmental processes, underpinning the importance of time-resolved stiffness measurements.


Assuntos
Encéfalo/embriologia , Encéfalo/fisiologia , Embrião não Mamífero/citologia , Xenopus laevis/embriologia , Animais , Axônios/fisiologia , Fenômenos Biomecânicos , Encéfalo/citologia , Corpo Celular/fisiologia , Contagem de Células , Mitose , Trato Óptico/fisiologia , Células Ganglionares da Retina/fisiologia
4.
Nat Neurosci ; 19(12): 1592-1598, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27643431

RESUMO

During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.


Assuntos
Axônios/metabolismo , Encéfalo/crescimento & desenvolvimento , Mecanotransdução Celular/fisiologia , Neurogênese/fisiologia , Retina/metabolismo , Vias Visuais/crescimento & desenvolvimento , Animais , Axônios/patologia , Células Ganglionares da Retina , Xenopus laevis , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA