Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Ecol ; 32(16): 4627-4647, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337956

RESUMO

Phylogeographic patterns in large mammals result from natural environmental factors and anthropogenic effects, which in some cases include domestication. The grey wolf was once widely distributed across the Holarctic, but experienced phylogeographic shifts and demographic declines during the Holocene. In the 19th-20th centuries, the species became extirpated from large parts of Europe due to direct extermination and habitat loss. We reconstructed the evolutionary history of the extinct Western European wolves based on the mitogenomic composition of 78 samples from France (Neolithic-20th century) in the context of other populations of wolves and dogs worldwide. We found a close genetic similarity of French wolves from ancient, medieval and recent populations, which suggests the long-term continuity of maternal lineages. MtDNA haplotypes of the French wolves showed large diversity and fell into two main haplogroups of modern Holarctic wolves. Our worldwide phylogeographic analysis indicated that haplogroup W1, which includes wolves from Eurasia and North America, originated in Northern Siberia. Haplogroup W2, which includes only European wolves, originated in Europe ~35 kya and its frequency was reduced during the Holocene due to an expansion of haplogroup W1 from the east. Moreover, we found that dog haplogroup D, currently restricted to Europe and the Middle East, was nested within the wolf haplogroup W2. This suggests European origin of haplogroup D, probably as a result of an ancient introgression from European wolves. Our results highlight the dynamic evolutionary history of European wolves during the Holocene, with a partial lineage replacement and introgressive hybridization with local dog populations.


Assuntos
Lobos , Cães , Animais , Lobos/genética , Filogenia , Evolução Biológica , Filogeografia , França , Haplótipos/genética , DNA Mitocondrial/genética
2.
Mol Ecol ; 30(24): 6509-6512, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719071

RESUMO

The predominant phylogenetic patterns within a genome do not always reflect correctly the history of evolutionary divergence and speciation, and the true phylogenetic signal tends to be concentrated within low-recombination regions of the genome. In this issue of Molecular Ecology, Hennelly et al. show that this is also the case for intraspecific relationships that are characterized by considerable gene flow between lineages. The study reconstructs the phylogenetic relationships of Indian and Tibetan wolves with other grey wolf (Canis lupus) populations worldwide, and demonstrates that these two populations represent phylogenetically distinct lineages. This inference was supported by using low-recombination regions of autosomal chromosomes and the X chromosome, which proved to be essential for correct inference of the lineage splitting order. Their study illustrates the power of analytical approaches that implement knowledge of genome evolution patterns to reconstruct complex intraspecific evolutionary relationships. The study also provides a compelling example of the application of modern phylogenomic approaches in the identification of evolutionarily significant units for the purpose of species conservation.


Assuntos
Lobos , Animais , Povo Asiático , Ecologia , Fluxo Gênico , Humanos , Filogenia , Lobos/genética
3.
Mol Phylogenet Evol ; 146: 106756, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32028032

RESUMO

Phylogeographic inference has provided extensive insight into the relative roles of geographical isolation and ecological processes during evolutionary radiations. However, the importance of cross-lineage admixture in facilitating adaptive radiations is increasingly being recognised, and suggested as a main cause of phylogenetic uncertainty. In this study, we used a double digest RADseq protocol to provide a high resolution (~4 Million bp) nuclear phylogeny of the Delphininae. Phylogenetic resolution of this group has been especially intractable, likely because it has experienced a recent species radiation. We carried out cross-lineage reticulation analyses, and tested for several sources of potential bias in determining phylogenies from genome sampling data. We assessed the divergence time and historical demography of T. truncatus and T. aduncus by sequencing the T. aduncus genome and comparing it with the T. truncatus reference genome. Our results suggest monophyly for the genus Tursiops, with the recently proposed T. australis species falling within the T. aduncus lineage. We also show the presence of extensive cross-lineage gene flow between pelagic and European coastal ecotypes of T. truncatus, as well as in the early stages of diversification between spotted (Stenella frontalis; Stenella attenuata), spinner (Stenella longirostris), striped (Stenella coeruleoalba), common (Delphinus delphis), and Fraser's (Lagenodelphis hosei) dolphins. Our study suggests that cross-lineage gene flow in this group has been more extensive and complex than previously thought. In the context of biogeography and local habitat dependence, these results improve our understanding of the evolutionary processes determining the history of this lineage.


Assuntos
Golfinhos/classificação , Animais , Evolução Biológica , Núcleo Celular/genética , Golfinhos/genética , Ecossistema , Fluxo Gênico , Genômica , Filogenia , Filogeografia , Stenella/classificação
5.
Nature ; 464(7290): 898-902, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20237475

RESUMO

Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.


Assuntos
Animais Domésticos/genética , Cães/genética , Genoma/genética , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Animais Domésticos/classificação , Animais Selvagens/classificação , Animais Selvagens/genética , Cruzamento , Biologia Computacional , Cães/classificação , Evolução Molecular , Ásia Oriental/etnologia , Oriente Médio/etnologia , Fenótipo , Filogenia , Lobos/classificação , Lobos/genética
6.
Mol Biol Evol ; 31(5): 1121-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24497033

RESUMO

Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline.


Assuntos
Evolução Molecular , Orca/genética , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Ecossistema , Variação Genética , Genética Populacional , Genoma , Haplótipos , Cadeias de Markov , Modelos Genéticos , Dinâmica Populacional , Fatores de Tempo
7.
Proc Biol Sci ; 282(1820): 20152189, 2015 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-26631564

RESUMO

Although a large part of the global domestic dog population is free-ranging and free-breeding, knowledge of genetic diversity in these free-breeding dogs (FBDs) and their ancestry relations to pure-breed dogs is limited, and the indigenous status of FBDs in Asia is still uncertain. We analyse genome-wide SNP variability of FBDs across Eurasia, and show that they display weak genetic structure and are genetically distinct from pure-breed dogs rather than constituting an admixture of breeds. Our results suggest that modern European breeds originated locally from European FBDs. East Asian and Arctic breeds show closest affinity to East Asian FBDs, and they both represent the earliest branching lineages in the phylogeny of extant Eurasian dogs. Our biogeographic reconstruction of ancestral distributions indicates a gradual westward expansion of East Asian indigenous dogs to the Middle East and Europe through Central and West Asia, providing evidence for a major expansion that shaped the patterns of genetic differentiation in modern dogs. This expansion was probably secondary and could have led to the replacement of earlier resident populations in Western Eurasia. This could explain why earlier studies based on modern DNA suggest East Asia as the region of dog origin, while ancient DNA and archaeological data point to Western Eurasia.


Assuntos
Evolução Biológica , Cães/genética , Animais , Ásia , Cães/classificação , Europa (Continente) , Variação Genética , Genética Populacional , Estudo de Associação Genômica Ampla , Filogeografia , Polimorfismo de Nucleotídeo Único
8.
Genome Res ; 21(8): 1294-305, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21566151

RESUMO

High-throughput genotyping technologies developed for model species can potentially increase the resolution of demographic history and ancestry in wild relatives. We use a SNP genotyping microarray developed for the domestic dog to assay variation in over 48K loci in wolf-like species worldwide. Despite the high mobility of these large carnivores, we find distinct hierarchical population units within gray wolves and coyotes that correspond with geographic and ecologic differences among populations. Further, we test controversial theories about the ancestry of the Great Lakes wolf and red wolf using an analysis of haplotype blocks across all 38 canid autosomes. We find that these enigmatic canids are highly admixed varieties derived from gray wolves and coyotes, respectively. This divergent genomic history suggests that they do not have a shared recent ancestry as proposed by previous researchers. Interspecific hybridization, as well as the process of evolutionary divergence, may be responsible for the observed phenotypic distinction of both forms. Such admixture complicates decisions regarding endangered species restoration and protection.


Assuntos
Evolução Biológica , Canidae/genética , Genoma , Animais , Coiotes/genética , Cães/genética , Evolução Molecular , Genótipo , Haplótipos , Hibridização Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Lobos/genética
9.
Genes (Basel) ; 14(2)2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36833343

RESUMO

Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.


Assuntos
Evolução Molecular , Vertebrados , Animais , Vertebrados/genética , Filogenia , Genoma , Regulação da Expressão Gênica
10.
Sci Adv ; 9(9): eade2537, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867701

RESUMO

The 1986 Chernobyl nuclear disaster initiated a series of catastrophic events resulting in long-term and widespread environmental contamination. We characterize the genetic structure of 302 dogs representing three free-roaming dog populations living within the power plant itself, as well as those 15 to 45 kilometers from the disaster site. Genome-wide profiles from Chernobyl, purebred and free-breeding dogs, worldwide reveal that the individuals from the power plant and Chernobyl City are genetically distinct, with the former displaying increased intrapopulation genetic similarity and differentiation. Analysis of shared ancestral genome segments highlights differences in the extent and timing of western breed introgression. Kinship analysis reveals 15 families, with the largest spanning all collection sites within the radioactive exclusion zone, reflecting migration of dogs between the power plant and Chernobyl City. This study presents the first characterization of a domestic species in Chernobyl, establishing their importance for genetic studies into the effects of exposure to long-term, low-dose ionizing radiation.


Assuntos
Acidente Nuclear de Chernobyl , Desastres , Cães , Animais , Meio Ambiente , Poluição Ambiental , Demografia
11.
Ecol Evol ; 13(1): e9720, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699566

RESUMO

The Saimaa ringed seal (Pusa hispida saimensis) is endemic to Lake Saimaa in Finland. The subspecies is thought to have originated when parts of the ringed seal population of the Baltic region were trapped in lakes emerging due to postglacial bedrock rebound around 9000 years ago. During the 20th century, the population experienced a drastic human-induced bottleneck. Today encompassing a little over 400 seals with extremely low genetic diversity, it is classified as endangered. We sequenced sections of the mitochondrial control region from 60 up to 125-years-old museum specimens of the Saimaa ringed seal. The generated dataset was combined with publicly available sequences. We studied how genetic variation has changed through time in this subspecies and how it is phylogenetically related to other ringed seal populations from the Baltic Sea, Lake Ladoga, North America, Svalbard, and the White Sea. We observed temporal fluctuations in haplotype frequencies and loss of haplotypes accompanied by a recent reduction in female effective population size. In apparent contrast with the traditionally held view of the Baltic origin of the population, the Saimaa ringed seal mtDNA variation also shows affinities to North American ringed seals. Our results suggest that the Saimaa ringed seal has experienced recent genetic drift associated with small population size. The results further suggest that extant Baltic ringed seal is not representative of the ancestral population of the Saimaa ringed seal, which calls for re-evaluation of the deep history of this subspecies.

12.
Evol Appl ; 15(11): 1806-1819, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426126

RESUMO

Aggressive behaviour by dogs is a considerable social problem, but the ability to predict which individuals may have increased aggressive tendencies is very limited, restricting the development of efficient preventive measures. There is a common perception that certain breeds are more likely to exhibit aggressive behaviour, which has contributed to the introduction of breed-specific legislation. The rationale for such legislation explicitly assumes high heritability of this trait while also implying relatively little variation within breeds; these assumptions are largely untested. We compared behavioural tendencies between 8 breeds that are subject to legislation in at least one country and 17 breeds that are not subject to legislation using two validated psychometric tools: the Dog Impulsivity Assessment Scale (DIAS), which scores elements of impulsivity, including a tendency for aggressive behaviour, and Positive and Negative Activation Scale (PANAS), which scores sensitivity to positive and negative stimuli (which may trigger aggressive responses). We found that the two groups of breeds do not differ significantly in the specific DIAS factor relating to aggressive behaviour, "Aggression Threshold and Response to Novelty", or any other DIAS and PANAS factors. We found large variations in all behavioural tendencies measured by both psychometric scales within both groups and within each breed studied. Taken together, our findings indicate that breed alone is not a reliable predictor of individual behavioural tendencies, including those related to aggression, and therefore breed-specific legislation is unlikely to be an effective instrument for reducing risk.

13.
Genes (Basel) ; 13(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35052393

RESUMO

Hybridization, defined as breeding between two distinct taxonomic units, can have an important effect on the evolutionary patterns in cross-breeding taxa. Although interspecific hybridization has frequently been considered as a maladaptive process, which threatens species genetic integrity and survival via genetic swamping and outbreeding depression, in some cases hybridization can introduce novel adaptive variation and increase fitness. Most studies to date focused on documenting hybridization events and analyzing their causes, while relatively little is known about the consequences of hybridization and its impact on the parental species. To address this knowledge gap, we conducted a systematic review of studies on hybridization in mammals published in 2010-2021, and identified 115 relevant studies. Of 13 categories of hybridization consequences described in these studies, the most common negative consequence (21% of studies) was genetic swamping and the most common positive consequence (8%) was the gain of novel adaptive variation. The total frequency of negative consequences (49%) was higher than positive (13%) and neutral (38%) consequences. These frequencies are biased by the detection possibilities of microsatellite loci, the most common genetic markers used in the papers assessed. As negative outcomes are typically easier to demonstrate than positive ones (e.g., extinction vs hybrid speciation), they may be over-represented in publications. Transition towards genomic studies involving both neutral and adaptive variation will provide a better insight into the real impacts of hybridization.


Assuntos
Evolução Biológica , Fluxo Gênico , Especiação Genética , Variação Genética , Hibridização Genética , Animais
14.
Behav Ecol ; 32(4): 646-656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539241

RESUMO

Domestication has greatly changed the social and reproductive behavior of dogs relative to that of wild members of the genus Canis, which typically exhibit social monogamy and extended parental care. Unlike a typical gray wolf pack that consists of a single breeding pair and their offspring from multiple seasons, a group of free-ranging dogs (FRDs) can include multiple breeding individuals of both sexes. To understand the consequences of this shift in reproductive behavior, we reconstructed the genetic pedigree of an FRD population and assessed the kinship patterns in social groups, based on genome-wide single-nucleotide polymorphism genotypes. Consistent with behavioral observations, the mating system of the study population was characterized by polygynandry. Instead of the discreet family units observed in wolves, FRDs were linked by a network of kinship relationships that spread across packs. However, we also observed reproduction of the same male-female pairs in multiple seasons, retention of adult offspring in natal packs, and dispersal between neighboring packs-patterns in common with wolves. Although monogamy is the predominant mating system in wolves, polygyny and polyandry are occasionally observed in response to increased food availability. Thus, polygynandry of domestic dogs was likely influenced by the shift in ecological niche from an apex predator to a human commensal.

15.
Evol Appl ; 14(10): 2433-2456, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34745336

RESUMO

Introgressive hybridization between domestic animals and their wild relatives is an indirect form of human-induced evolution, altering gene pools and phenotypic traits of wild and domestic populations. Although this process is well documented in many taxa, its evolutionary consequences are poorly understood. In this study, we assess introgression patterns in admixed populations of Eurasian wolves and free-ranging domestic dogs (FRDs), identifying chromosomal regions with significantly overrepresented hybrid ancestry and assessing whether genes located within these regions show signatures of selection. Although the dog admixture proportion in West Eurasian wolves (2.7%) was greater than the wolf admixture proportion in FRDs (0.75%), the number and average length of chromosomal blocks showing significant overrepresentation of hybrid ancestry were smaller in wolves than FRDs. In wolves, 6% of genes located within these blocks showed signatures of positive selection compared to 23% in FRDs. We found that introgression from wolves may provide a considerable adaptive advantage to FRDs, counterbalancing some of the negative effects of domestication, which can include reduced genetic diversity and excessive tameness. In wolves, introgression from FRDs is mostly driven by drift, with a small number of positively selected genes associated with brain function and behaviour. The predominance of drift may be the consequence of small effective size of wolf populations, which reduces efficiency of selection for weakly advantageous or against weakly disadvantageous introgressed variants. Small wolf population sizes result largely from human-induced habitat loss and hunting, thus linking introgression rates to anthropogenic processes. Our results imply that maintenance of large population sizes should be an important element of wolf management strategies aimed at reducing introgression rates of dog-derived variants.

16.
BMC Evol Biol ; 10: 104, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20409299

RESUMO

BACKGROUND: While it is generally accepted that patterns of intra-specific genetic differentiation are substantially affected by glacial history, population genetic processes occurring during Pleistocene glaciations are still poorly understood. In this study, we address the question of the genetic consequences of Pleistocene glaciations for European grey wolves. Combining our data with data from published studies, we analysed phylogenetic relationships and geographic distribution of mitochondrial DNA haplotypes for 947 contemporary European wolves. We also compared the contemporary wolf sequences with published sequences of 24 ancient European wolves. RESULTS: We found that haplotypes representing two haplogroups, 1 and 2, overlap geographically, but substantially differ in frequency between populations from south-western and eastern Europe. A comparison between haplotypes from Europe and other continents showed that both haplogroups are spread throughout Eurasia, while only haplogroup 1 occurs in contemporary North American wolves. All ancient wolf samples from western Europe that dated from between 44,000 and 1,200 years B.P. belonged to haplogroup 2, suggesting the long-term predominance of this haplogroup in this region. Moreover, a comparison of current and past frequencies and distributions of the two haplogroups in Europe suggested that haplogroup 2 became outnumbered by haplogroup 1 during the last several thousand years. CONCLUSIONS: Parallel haplogroup replacement, with haplogroup 2 being totally replaced by haplogroup 1, has been reported for North American grey wolves. Taking into account the similarity of diets reported for the late Pleistocene wolves from Europe and North America, the correspondence between these haplogroup frequency changes may suggest that they were associated with ecological changes occurring after the Last Glacial Maximum.


Assuntos
DNA Mitocondrial/genética , Lobos/classificação , Lobos/genética , Animais , Europa (Continente) , Filogenia
17.
Mol Ecol ; 19(13): 2800-12, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20561198

RESUMO

Genetic variability, kin structure and demography of a population are mutually dependent. Population genetic theory predicts that under demographically stable conditions, neutral genetic variability reaches equilibrium between gene flow and drift. However, density fluctuations and non-random mating, resulting e.g. from kin clustering, may lead to changes in genetic composition over time. Theoretical models also predict that changes in kin structure may affect aggression level and recruitment, leading to density fluctuations. These predictions have been rarely tested in natural populations. The aim of this study was to analyse changes in genetic variability and kin structure in a local population of the root vole (Microtus oeconomus) that underwent a fourfold change in mean density over a 6-year period. Intensive live-trapping resulted in sampling 88% of individuals present in the study area, as estimated from mark-recapture data. Based on 642 individual genotypes at 20 microsatellite loci, we compared genetic variability and kin structure of this population between consecutive years. We found that immigration was negatively correlated with density, while the number of kin groups was positively correlated with density. This is consistent with theoretical predictions that changes in kin structure play an important role in population fluctuations. Despite the changes in density and kin structure, there was no genetic differentiation between years. Population-level genetic diversity measures did not significantly vary in time and remained relatively high (H(E) range: 0.72-0.78). These results show that a population that undergoes significant demographic and social changes may maintain high genetic variability and stable genetic composition.


Assuntos
Arvicolinae/genética , Variação Genética , Genética Populacional , Reprodução/genética , Animais , Feminino , Genótipo , Desequilíbrio de Ligação , Masculino , Repetições de Microssatélites , Polônia , Densidade Demográfica , Análise de Sequência de DNA , Fatores de Tempo
18.
Mol Ecol ; 18(9): 1963-79, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19434812

RESUMO

The brown bear has proved a useful model for studying Late Quaternary mammalian phylogeography. However, information is lacking from northern continental Eurasia, which constitutes a large part of the species' current distribution. We analysed mitochondrial DNA sequences (totalling 1943 bp) from 205 bears from northeast Europe and Russia in order to characterize the maternal phylogeography of bears in this region. We also estimated the formation times of the sampled brown bear lineages and those of its extinct relative, the cave bear. Four closely related haplogroups belonging to a single mitochondrial subclade were identified in northern continental Eurasia. Several haplotypes were found throughout the whole study area, while one haplogroup was restricted to Kamchatka. The haplotype network, estimated divergence times and various statistical tests indicated that bears in northern continental Eurasia recently underwent a sudden expansion, preceded by a severe bottleneck. This brown bear population was therefore most likely founded by a small number of bears that were restricted to a single refuge area during the last glacial maximum. This pattern has been described previously for other mammal species and as such may represent one general model for the phylogeography of Eurasian mammals. Bayesian divergence time estimates are presented for different brown and cave bear clades. Moreover, our results demonstrate the extent of substitution rate variation occurring throughout the phylogenetic tree, highlighting the need for appropriate calibration when estimating divergence times.


Assuntos
Evolução Molecular , Genética Populacional , Ursidae/genética , Animais , DNA Mitocondrial/genética , Demografia , Europa (Continente) , Variação Genética , Geografia , Haplótipos , Modelos Genéticos , Filogenia , Dinâmica Populacional , Federação Russa , Análise de Sequência de DNA
19.
Sci Rep ; 9(1): 17328, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757998

RESUMO

The evolutionary relationships between extinct and extant lineages provide important insight into species' response to environmental change. The grey wolf is among the few Holarctic large carnivores that survived the Late Pleistocene megafaunal extinctions, responding to that period's profound environmental changes with loss of distinct lineages and phylogeographic shifts, and undergoing domestication. We reconstructed global genome-wide phylogeographic patterns in modern wolves, including previously underrepresented Siberian wolves, and assessed their evolutionary relationships with a previously genotyped wolf from Taimyr, Siberia, dated at 35 Kya. The inferred phylogeographic structure was affected by admixture with dogs, coyotes and golden jackals, stressing the importance of accounting for this process in phylogeographic studies. The Taimyr lineage was distinct from modern Siberian wolves and constituted a sister lineage of modern Eurasian wolves and domestic dogs, with an ambiguous position relative to North American wolves. We detected gene flow from the Taimyr lineage to Arctic dog breeds, but population clustering methods indicated closer similarity of the Taimyr wolf to modern wolves than dogs, implying complex post-divergence relationships among these lineages. Our study shows that introgression from ecologically diverse con-specific and con-generic populations was common in wolves' evolutionary history, and could have facilitated their adaptation to environmental change.


Assuntos
Sequenciamento Completo do Genoma/veterinária , Lobos/classificação , Lobos/genética , Animais , Regiões Árticas , Bases de Dados Genéticas , Evolução Molecular , Fluxo Gênico , Desequilíbrio de Ligação , Filogenia , Filogeografia , Sibéria
20.
Evol Appl ; 11(5): 662-680, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29875809

RESUMO

Hybridisation between a domesticated species and its wild ancestor is an important conservation problem, especially if it results in the introgression of domestic gene variants into wild species. Nevertheless, the legal status of hybrids remains unregulated, partially because of the limited understanding of the hybridisation process and its consequences. The occurrence of hybridisation between grey wolves and domestic dogs is well documented from different parts of the wolf geographic range, but little is known about the frequency of hybridisation events, their causes and the genetic impact on wolf populations. We analysed 61K SNPs spanning the canid genome in wolves from across Eurasia and North America and compared that data to similar data from dogs to identify signatures of admixture. The haplotype block analysis, which included 38 autosomes and the X chromosome, indicated the presence of individuals of mixed wolf-dog ancestry in most Eurasian wolf populations, but less admixture was present in North American populations. We found evidence for male-biased introgression of dog alleles into wolf populations, but also identified a first-generation hybrid resulting from mating between a female dog and a male wolf. We found small blocks of dog ancestry in the genomes of 62% Eurasian wolves studied and melanistic individuals with no signs of recent admixed ancestry, but with a dog-derived allele at a locus linked to melanism. Consequently, these results suggest that hybridisation has been occurring in different parts of Eurasia on multiple timescales and is not solely a recent phenomenon. Nevertheless, wolf populations have maintained genetic differentiation from dogs, suggesting that hybridisation at a low frequency does not diminish distinctiveness of the wolf gene pool. However, increased hybridisation frequency may be detrimental for wolf populations, stressing the need for genetic monitoring to assess the frequency and distribution of individuals resulting from recent admixture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA