Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 154(3): 541-55, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23871696

RESUMO

Acquired chromosomal instability and copy number alterations are hallmarks of cancer. Enzymes capable of promoting site-specific copy number changes have yet to be identified. Here, we demonstrate that H3K9/36me3 lysine demethylase KDM4A/JMJD2A overexpression leads to localized copy gain of 1q12, 1q21, and Xq13.1 without global chromosome instability. KDM4A-amplified tumors have increased copy gains for these same regions. 1q12h copy gain occurs within a single cell cycle, requires S phase, and is not stable but is regenerated each cell division. Sites with increased copy number are rereplicated and have increased KDM4A, MCM, and DNA polymerase occupancy. Suv39h1/KMT1A or HP1γ overexpression suppresses the copy gain, whereas H3K9/K36 methylation interference promotes gain. Our results demonstrate that overexpression of a chromatin modifier results in site-specific copy gains. This begins to establish how copy number changes could originate during tumorigenesis and demonstrates that transient overexpression of specific chromatin modulators could promote these events.


Assuntos
Replicação do DNA , Dosagem de Genes , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias/genética , Cromatina/metabolismo , Cromossomos Humanos Par 1 , Instabilidade Genômica , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Neoplasias/metabolismo , Estrutura Terciária de Proteína , Fase S
2.
Mol Psychiatry ; 27(3): 1829-1838, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997190

RESUMO

Acetylcholine (ACh) levels are elevated in actively depressed subjects. Conversely, antagonism of either nicotinic or muscarinic ACh receptors can have antidepressant effects in humans and decrease stress-relevant behaviors in rodents. Consistent with a role for ACh in mediating maladaptive responses to stress, brain ACh levels increase in response to stressful challenges, whereas systemically blocking acetylcholinesterase (AChE, the primary ACh degradative enzyme) elicits depression-like symptoms in human subjects, and selectively blocking AChE in the hippocampus increases relevant behaviors in rodents. We used an ACh sensor to characterize stress-evoked ACh release, then used chemogenetic, optogenetic and pharmacological approaches to determine whether cholinergic inputs from the medial septum/diagonal bands of Broca (MSDBB) or ChAT-positive neurons intrinsic to the hippocampus mediate stress-relevant behaviors in mice. Chemogenetic inhibition or activation of MSDBB cholinergic neurons did not result in significant behavioral effects, while inhibition attenuated the behavioral effects of physostigmine. In contrast, optogenetic stimulation of septohippocampal terminals or selective chemogenetic activation of ChAT-positive inputs to hippocampus increased stress-related behaviors. Finally, stimulation of sparse ChAT-positive hippocampal neurons increased stress-related behaviors in one ChAT-Cre line, which were attenuated by local infusion of cholinergic antagonists. These studies suggest that ACh signaling results in maladaptive behavioral responses to stress if the balance of signaling is shifted toward increased hippocampal engagement.


Assuntos
Acetilcolina , Acetilcolinesterase , Acetilcolinesterase/farmacologia , Animais , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/farmacologia , Colinérgicos/farmacologia , Neurônios Colinérgicos/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos
3.
Nature ; 548(7667): 334-337, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28783732

RESUMO

Cells in healthy tissues acquire mutations with surprising frequency. Many of these mutations are associated with abnormal cellular behaviours such as differentiation defects and hyperproliferation, yet fail to produce macroscopically detectable phenotypes. It is currently unclear how the tissue remains phenotypically normal, despite the presence of these mutant cells. Here we use intravital imaging to track the fate of mouse skin epithelium burdened with varying numbers of activated Wnt/ß-catenin stem cells. We show that all resulting growths that deform the skin tissue architecture regress, irrespective of their size. Wild-type cells are required for the active elimination of mutant cells from the tissue, while utilizing both endogenous and ectopic cellular behaviours to dismantle the aberrant structures. After regression, the remaining structures are either completely eliminated or converted into functional skin appendages in a niche-dependent manner. Furthermore, tissue aberrancies generated from oncogenic Hras, and even mutation-independent deformations to the tissue, can also be corrected, indicating that this tolerance phenomenon reflects a conserved principle in the skin. This study reveals an unanticipated plasticity of the adult skin epithelium when faced with mutational and non-mutational insult, and elucidates the dynamic cellular behaviours used for its return to a homeostatic state.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Homeostase , Mutação , Fenótipo , Pele/citologia , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
Nature ; 520(7548): 553-7, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25642965

RESUMO

Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids. The abundant mtDNA-binding protein TFAM (transcription factor A, mitochondrial) regulates nucleoid architecture, abundance and segregation. Complete mtDNA depletion profoundly impairs oxidative phosphorylation, triggering calcium-dependent stress signalling and adaptive metabolic responses. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and ageing, remain poorly defined. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signalling to enhance the expression of a subset of interferon-stimulated genes. Mechanistically, we find that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS (also known as MB21D1) and promotes STING (also known as TMEM173)-IRF3-dependent signalling to elevate interferon-stimulated gene expression, potentiate type I interferon responses and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which enhances antiviral signalling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signalling and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully engage antiviral innate immunity.


Assuntos
DNA Mitocondrial/metabolismo , Herpesvirus Humano 1/imunologia , Imunidade Inata/imunologia , Estresse Fisiológico , Animais , Linhagem Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo
5.
Cancer Cytopathol ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207725

RESUMO

BACKGROUND: Lung cancer complicated by malignant pleural effusions (MPEs) is associated with significantly increased morbidity and mortality, yet the mechanisms of MPE development remain poorly understood. This study sought to elucidate whether there were specific genomic alterations and/or immunologic biomarkers associated with the presence of MPEs. METHODS: Analysis of comprehensive genomic and immunologic profiling for 275 locally advanced (stage III) or advanced (stage IV) lung adenocarcinomas was subcategorized into cytology-confirmed MPE-positive (MPE+; n = 139 stage IV) and MPE-negative (MPE-; n = 30 stage III + n = 106 stage IV) groups. RESULTS: Smoking frequency (p = .0001) and tumor mutational burden (p < .001) were demonstrated to be lower in the MPE+ group compared to the MPE- group. Median overall survival in the MPE+ group was shorter than in the MPE- group across all data (2.0 vs. 5.5 years; p < .0001) and for smokers (1.2 vs. 6.4 years; p < .0001). There were a number of differences at the genomic level across all cases and when stratifying by smoking status, including a higher frequency of EGFR mutations and a lower frequency of STK11 mutations in the MPE+ cohort. Finally, investigation of the comutational profiles of tumors by MPE status revealed differences in TP53- and STK11-mutant tumors between the two groups. CONCLUSIONS: Overall, these findings imply that there are both clinical and genetic factors associated with advanced lung adenocarcinoma MPEs. Future studies of these alterations may prove important both for understanding the pathophysiology of MPE development in advanced cancer and for the earlier detection of at-risk patients.

6.
Amyotroph Lateral Scler ; 12(2): 109-12, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21091399

RESUMO

Depression is an under-recognized comorbidity associated with amyotrophic lateral sclerosis (ALS). The goals of this study were to prospectively estimate the prevalence of depression and other ALS related symptoms and to study the impact of depression on enrollment in research studies. One hundred and twenty-seven people with ALS completed the ALS Depression Inventory (ADI-12) and answered questions about ALS related symptoms and research study enrollment preferences. Demographics, ALS symptoms, medications, functional status, and research enrollment were compared between depressed and non-depressed patients. Results showed that the prevalence of mild and severe depression was 29% and 6%, respectively. More than one-third of our ALS patients were receiving anti-depressants to treat depression, sialorrhea, and pseudobulbar affect. Depression prevalence was not correlated with disease duration or progression. Except for anxiety, none of the ALS related symptoms predicted depression. The presence of depression did not have an effect on the decision to enroll in research studies. In conclusion, major depression is less common in our ALS cohort than in the general population. The diagnosis of depression can be masked by some ALS related symptoms and it has no impact on enrollment in ALS clinical trials.


Assuntos
Esclerose Lateral Amiotrófica/complicações , Depressão/etiologia , Esclerose Lateral Amiotrófica/epidemiologia , Antidepressivos/uso terapêutico , Ensaios Clínicos como Assunto , Comorbidade , Depressão/tratamento farmacológico , Depressão/epidemiologia , Humanos , Escalas de Graduação Psiquiátrica , Inquéritos e Questionários
7.
Nat Cell Biol ; 23(5): 476-484, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958758

RESUMO

Organs consist of multiple cell types that ensure proper architecture and function. How different cell types coexist and interact to maintain their homeostasis in vivo remains elusive. The skin epidermis comprises mostly epithelial cells, but also harbours Langerhans cells (LCs) and dendritic epidermal T cells (DETCs). Whether and how distributions of LCs and DETCs are regulated during homeostasis is unclear. Here, by tracking individual cells in the skin of live adult mice over time, we show that LCs and DETCs actively maintain a non-random spatial distribution despite continuous turnover of neighbouring basal epithelial cells. Moreover, the density of epithelial cells regulates the composition of LCs and DETCs in the epidermis. Finally, LCs require the GTPase Rac1 to maintain their positional stability, density and tiling pattern reminiscent of neuronal self-avoidance. We propose that these cellular mechanisms provide the epidermis with an optimal response to environmental insults.


Assuntos
Células Epidérmicas/citologia , Epiderme/metabolismo , Pele/citologia , Linfócitos T/imunologia , Animais , Células Epidérmicas/imunologia , Epiderme/imunologia , Homeostase/imunologia , Homeostase/fisiologia , Junções Intercelulares/patologia , Camundongos Transgênicos , Pele/imunologia
8.
J Cell Biol ; 218(10): 3212-3222, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31488583

RESUMO

Mutations associated with tumor development in certain tissues can be nontumorigenic in others, yet the mechanisms underlying these different outcomes remains poorly understood. To address this, we targeted an activating Hras mutation to hair follicle stem cells and discovered that Hras mutant cells outcompete wild-type neighbors yet are integrated into clinically normal skin hair follicles. In contrast, targeting the Hras mutation to the upper noncycling region of the skin epithelium leads to benign outgrowths. Follicular Hras mutant cells autonomously and nonautonomously enhance regeneration, which directs mutant cells into continuous tissue cycling to promote integration rather than aberrancy. This follicular tolerance is maintained under additional challenges that promote tumorigenesis in the epidermis, including aging, injury, and a secondary mutation. Thus, the hair follicle possesses a unique, enhanced capacity to integrate and contain Hras mutant cells within both homeostatic and perturbed tissue, demonstrating that in the skin, multiple, distinct mechanisms exist to suppress oncogenic growth.


Assuntos
Carcinogênese , Folículo Piloso/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Regeneração , Proteínas ras/metabolismo , Animais , Camundongos , Camundongos Transgênicos
9.
Nat Protoc ; 10(7): 1116-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26110716

RESUMO

Hair follicles are mammalian skin organs that periodically and stereotypically regenerate from a small pool of stem cells. Hence, hair follicles are a widely studied model for stem cell biology and regeneration. This protocol describes the use of two-photon laser-scanning microscopy (TPLSM) to study hair regeneration within a living, uninjured mouse. TPLSM provides advantages over conventional approaches, including enabling time-resolved imaging of single hair follicle stem cells. Thus, it is possible to capture behaviors including apoptosis, proliferation and migration, and to revisit the same cells for in vivo lineage tracing. In addition, a wide range of fluorescent reporter mouse lines facilitates TPLSM in the skin. This protocol also describes TPLSM laser ablation, which can spatiotemporally manipulate specific cellular populations of the hair follicle or microenvironment to test their regenerative contributions. The preparation time is variable depending on the goals of the experiment, but it generally takes 30-60 min. Imaging time is dependent on the goals of the experiment. Together, these components of TPLSM can be used to develop a comprehensive understanding of hair regeneration during homeostasis and injury.


Assuntos
Folículo Piloso/fisiologia , Microscopia Intravital/métodos , Regeneração/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Folículo Piloso/citologia , Microscopia Intravital/instrumentação , Camundongos , Camundongos Transgênicos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA