Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Synth Biol (Oxf) ; 7(1): ysac006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734540

RESUMO

Saturation mutagenesis is a semi-rational approach for protein engineering where sites are saturated either entirely or partially to include amino acids of interest. We previously reported on a codon compression algorithm, where a set of minimal degenerate codons are selected according to user-defined parameters such as the target organism, type of saturation and usage levels. Here, we communicate an addition to our web tool that considers the distance between the wild-type codon and the library, depending on its purpose. These forms of restricted collections further reduce library size, lowering downstream screening efforts or, in turn, allowing more comprehensive saturation of multiple sites. The library design tool can be accessed via http://www.dynamcc.com/dynamcc_d/. Graphical Abstract.

2.
mBio ; 8(6)2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138304

RESUMO

The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of single nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology.IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.


Assuntos
Evolução Molecular Direcionada , Código Genético , Mutação Puntual , Biologia Sintética/métodos , Modelos Genéticos
3.
ACS Synth Biol ; 5(9): 1021-3, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27169595

RESUMO

Saturation mutagenesis is widely used in protein engineering and other experiments. A common practice is to utilize the single degenerate codon NNK. However, this approach suffers from amino acid bias and the presence of a stop codon and of the wild type amino acid. These extra features needlessly increase library size and consequently downstream screening load. Recently, we developed the DYNAMCC algorithms for codon compression that find the minimal set of degenerate codons, covering any defined set of amino acids, with no off-target codons and with redundancy control. Additionally, we experimentally demonstrated the advantages of this approach over the standard NNK method. While the code is freely available from our Web site, we have now made this method more accessible to a broader audience without any computational background by building a user-friendly web-based interface for those algorithms. The Web site can be accessed through: www.dynamcc.com .


Assuntos
Códon/genética , Código Genético/genética , Algoritmos , Aminoácidos/genética , Biblioteca Gênica , Mutagênese/genética , Engenharia de Proteínas/métodos
4.
ACS Synth Biol ; 4(5): 604-14, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25303315

RESUMO

Saturation mutagenesis is employed in protein engineering and genome-editing efforts to generate libraries that span amino acid design space. Traditionally, this is accomplished by using degenerate/compressed codons such as NNK (N = A/C/G/T, K = G/T), which covers all amino acids and one stop codon. These solutions suffer from two types of redundancy: (a) different codons for the same amino acid lead to bias, and (b) wild type amino acid is included within the library. These redundancies increase library size and downstream screening efforts. Here, we present a dynamic approach to compress codons for any desired list of amino acids, taking into account codon usage. This results in a unique codon collection for every amino acid to be mutated, with the desired redundancy level. Finally, we demonstrate that this approach can be used to design precise oligo libraries amendable to recombineering and CRISPR-based genome editing to obtain a diverse population with high efficiency.


Assuntos
Códon/genética , Mutagênese/genética , Algoritmos , Aminoácidos/genética , Biblioteca Gênica , Mutação/genética , Oligonucleotídeos/genética , Engenharia de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA