Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 61(4): 507-519, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26876937

RESUMO

The regulatory role of N(6)-methyladenosine (m(6)A) and its nuclear binding protein YTHDC1 in pre-mRNA splicing remains an enigma. Here we show that YTHDC1 promotes exon inclusion in targeted mRNAs through recruiting pre-mRNA splicing factor SRSF3 (SRp20) while blocking SRSF10 (SRp38) mRNA binding. Transcriptome assay with PAR-CLIP-seq analysis revealed that YTHDC1-regulated exon-inclusion patterns were similar to those of SRSF3 but opposite of SRSF10. In vitro pull-down assay illustrated a competitive binding of SRSF3 and SRSF10 to YTHDC1. Moreover, YTHDC1 facilitates SRSF3 but represses SRSF10 in their nuclear speckle localization, RNA-binding affinity, and associated splicing events, dysregulation of which, as the result of YTHDC1 depletion, can be restored by reconstitution with wild-type, but not m(6)A-binding-defective, YTHDC1. Our findings provide the direct evidence that m(6)A reader YTHDC1 regulates mRNA splicing through recruiting and modulating pre-mRNA splicing factors for their access to the binding regions of targeted mRNAs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Sítios de Ligação , Éxons , Células HeLa , Humanos , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina
2.
J Biomed Sci ; 30(1): 32, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217939

RESUMO

BACKGROUND: Nutrient limitations often lead to metabolic stress during cancer initiation and progression. To combat this stress, the enzyme heme oxygenase 1 (HMOX1, commonly known as HO-1) is thought to play a key role as an antioxidant. However, there is a discrepancy between the level of HO-1 mRNA and its protein, particularly in cells under stress. O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of proteins (O-GlcNAcylation) is a recently discovered cellular signaling mechanism that rivals phosphorylation in many proteins, including eukaryote translation initiation factors (eIFs). The mechanism by which eIF2α O-GlcNAcylation regulates translation of HO-1 during extracellular arginine shortage (ArgS) remains unclear. METHODS: We used mass spectrometry to study the relationship between O-GlcNAcylation and Arg availability in breast cancer BT-549 cells. We validated eIF2α O-GlcNAcylation through site-specific mutagenesis and azido sugar N-azidoacetylglucosamine-tetraacylated labeling. We then evaluated the effect of eIF2α O-GlcNAcylation on cell recovery, migration, accumulation of reactive oxygen species (ROS), and metabolic labeling during protein synthesis under different Arg conditions. RESULTS: Our research identified eIF2α, eIF2ß, and eIF2γ, as key O-GlcNAcylation targets in the absence of Arg. We found that O-GlcNAcylation of eIF2α plays a crucial role in regulating antioxidant defense by suppressing the translation of the enzyme HO-1 during Arg limitation. Our study showed that O-GlcNAcylation of eIF2α at specific sites suppresses HO-1 translation despite high levels of HMOX1 transcription. We also found that eliminating eIF2α O-GlcNAcylation through site-specific mutagenesis improves cell recovery, migration, and reduces ROS accumulation by restoring HO-1 translation. However, the level of the metabolic stress effector ATF4 is not affected by eIF2α O-GlcNAcylation under these conditions. CONCLUSIONS: Overall, this study provides new insights into how ArgS fine-tunes the control of translation initiation and antioxidant defense through eIF2α O-GlcNAcylation, which has potential biological and clinical implications.


Assuntos
Arginina , Fator de Iniciação 2 em Eucariotos , Heme Oxigenase-1 , Antioxidantes , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Heme Oxigenase-1/genética , Homeostase , Espécies Reativas de Oxigênio/metabolismo , Humanos
3.
J Lipid Res ; 54(1): 177-88, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103473

RESUMO

The use of nicotinic acid to treat dyslipidemia is limited by induction of a "flushing" response, mediated in part by the interaction of prostaglandin D(2) (PGD(2)) with its G-protein coupled receptor, DP1 (Ptgdr). The impact of DP1 blockade (genetic or pharmacologic) was assessed in experimental murine models of atherosclerosis. In Ptgdr(-/-)ApoE(-/-) mice versus ApoE(-/-) mice, both fed a high-fat diet, aortic cholesterol content was modestly higher (1.3- to 1.5-fold, P < 0.05) in Ptgdr(-/-)ApoE(-/-) mice at 16 and 24 weeks of age, but not at 32 weeks. In multiple ApoE(-/-) mouse studies, a DP1-specific antagonist, L-655, generally had a neutral to beneficial effect on aortic lipids in the presence or absence of nicotinic acid treatment. In a separate study, a modest increase in some atherosclerotic measures was observed with L-655 treatment in Ldlr(-/-) mice fed a high-fat diet for 8 weeks; however, this effect was not sustained for 16 or 24 weeks. In the same study, treatment with nicotinic acid alone generally decreased plasma and/or aortic lipids, and addition of L-655 did not negate those beneficial effects. These studies demonstrate that inhibition of DP1, with or without nicotinic acid treatment, does not lead to consistent or sustained effects on plaque burden in mouse atherosclerotic models.


Assuntos
Técnicas de Silenciamento de Genes , Niacina/farmacologia , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/genética , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Apolipoproteínas E/deficiência , Colesterol/metabolismo , Interações Medicamentosas , Determinação de Ponto Final , Feminino , Humanos , Masculino , Camundongos , Niacina/uso terapêutico , Placa Aterosclerótica/genética , Receptores Imunológicos/deficiência , Receptores de LDL/deficiência , Receptores de Prostaglandina/deficiência , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo
4.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662271

RESUMO

The mammalian RAD52 protein is a DNA repair factor that has both strand annealing and recombination mediator activities, yet is dispensable for cell viability. To characterize genetic contexts that reveal dependence on RAD52 to sustain cell viability (i.e., synthetic lethal relationships), we performed genome-wide CRISPR knock-out screens. Subsequent secondary screening found that depletion of ERCC6L in RAD52-deficient cells causes reduced viability and elevated genome instability, measured as accumulation of 53BP1 into nuclear foci. Furthermore, loss of RAD52 causes elevated levels of anaphase ultrafine bridges marked by ERCC6L, and conversely depletion of ERCC6L causes elevated RAD52 foci both in prometaphase and interphase cells. These effects were enhanced with combination treatments using hydroxyurea and the topoisomerase IIα inhibitor ICRF-193, and the timing of these treatments are consistent with defects in addressing such stress in mitosis. Thus, loss of RAD52 appears to cause an increased reliance on ERCC6L in mitosis, and vice versa. Consistent with this notion, combined depletion of ERCC6L and disrupting G2/M progression via CDK1 inhibition causes a marked loss of viability in RAD52-deficient cells. We suggest that RAD52 and ERCC6L play compensatory roles in protecting genome stability in mitosis.

5.
J Lipid Res ; 53(1): 51-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22021650

RESUMO

In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures. Plasma lipoprotein profiles, eight major plasma lipid fractions, and FA compositions within these lipid fractions were compared both qualitatively and quantitatively across the species. Given the importance of statins in decreasing plasma low-density lipoprotein cholesterol for treatment of dyslipidemia in humans, the responses of these measures to simvastatin treatment were also assessed for each species and compared with dyslipidemic humans. NHPs, followed by dog, were the models that demonstrated closest overall match to dyslipidemic humans. For the subset of the dyslipidemic population with high plasma triglyceride levels, the data also pointed to hamster and db/db mouse as representative models for practical use in target validation. Most traditional models, including rabbit, Zucker diabetic fatty rat, and the majority of mouse models, did not demonstrate overall similarity to dyslipidemic humans in this study.


Assuntos
Modelos Animais de Doenças , Dislipidemias/sangue , Lipídeos/sangue , Animais , Cricetinae , Cães , Dislipidemias/tratamento farmacológico , Ácidos Graxos/sangue , Humanos , Camundongos , Primatas , Sinvastatina/uso terapêutico , Triglicerídeos/sangue
6.
DNA Repair (Amst) ; 119: 103394, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36095925

RESUMO

O-Linked ß-N-acetylglucosamine glycosylation (O-GlcNAcylation) to serine or threonine residues is a reversible and dynamic post-translational modification. O-GlcNAc transferase (OGT) is the only enzyme for O-GlcNAcylation, and is a potential cancer therapeutic target in combination with clastogenic (i.e., chromosomal breaking) therapeutics. Thus, we sought to examine the influence of O-GlcNAcylation on chromosomal break repair. Using a set of DNA double strand break (DSB) reporter assays, we found that the depletion of OGT, and its inhibition with a small molecule each caused a reduction in repair pathways that involve use of homology: RAD51-dependent homology-directed repair (HDR), and single strand annealing. In contrast, such OGT disruption did not obviously affect chromosomal break end joining, and furthermore caused an increase in homology-directed gene targeting. Such disruption in OGT also caused a reduction in clonogenic survival, as well as modifications to cell cycle profiles, particularly an increase in G1-phase cells. We also examined intermediate steps of HDR, finding no obvious effects on an assay for DSB end resection, nor for RAD51 recruitment into ionizing radiation induced foci (IRIF) in proliferating cells. However, we also found that the influence of OGT on HDR and homology-directed gene targeting were dependent on RAD52, and that OGT is important for RAD52 IRIF in proliferating cells. Thus, we suggest that OGT is important for regulation of HDR that is partially linked to RAD52 function.


Assuntos
Acetilglucosamina , Quebra Cromossômica , Acetilglucosamina/metabolismo , DNA , Humanos , N-Acetilglucosaminiltransferases , Serina/metabolismo , Treonina/metabolismo
7.
DNA Repair (Amst) ; 118: 103380, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926296

RESUMO

Chromosomal DNA double-strand breaks (DSBs) are the effective lesion of radiotherapy and other clastogenic cancer therapeutics, and are also the initiating event of many approaches to gene editing. Ligation of the DSBs by end joining (EJ) pathways can restore the broken chromosome, but the repair junctions can have insertion/deletion (indel) mutations. The indel patterns resulting from DSB EJ are likely defined by the initial structure of the DNA ends, how the ends are processed and synapsed prior to ligation, and the factors that mediate the ligation step. In this review, we describe key factors that influence these steps of DSB EJ in mammalian cells, which is significant both for understanding mutagenesis resulting from clastogenic cancer therapeutics, and for developing approaches to manipulating gene editing outcomes.


Assuntos
Quebra Cromossômica , Quebras de DNA de Cadeia Dupla , Animais , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Humanos , Mamíferos/genética , Mutagênese
8.
PLoS One ; 12(9): e0182810, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28877180

RESUMO

Continuous glucose monitoring (CGM) is a platform to measure blood glucose (BG) levels continuously in real time with high enough resolution to document their underlying fluctuations. Multiscale entropy (MSE) analysis has been proposed as a measure of time-series complexity, and when applied to clinical CGM data, MSE analysis revealed that diabetic patients have lower MSE complexity in their BG time series than healthy subjects. To determine if the clinical observations on complexity of glucose dynamics can be back-translated to relevant preclinical species used routinely in diabetes drug discovery, we performed CGM in both mouse (ob/ob) and rat (Zucker Diabetic Fatty, ZDF) models of diabetes. We demonstrate that similar to human data, the complexity of glucose dynamics is also decreased in diabetic mice and rats. We show that low complexity of glucose dynamics is not simply a reflection of high glucose values, but rather reflective of the underlying disease state (i.e. diabetes). Finally, we demonstrate for the first time that the complexity of glucose fluctuations in ZDF rats, as probed by MSE analysis, is decreased prior to the onset of overt diabetes, although complexity undergoes further decline during the transition to frank diabetes. Our study suggests that MSE could serve as a novel biomarker for the progression to diabetes and that complexity studies in preclinical models could offer a new paradigm for early differentiation, and thereby, selection of appropriate clinical candidate molecules to be tested in human clinical trials.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Animais , Entropia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/sangue , Ratos , Ratos Zucker , Magreza/sangue
9.
J Pharmacol Toxicol Methods ; 84: 93-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27956205

RESUMO

INTRODUCTION: Mouse transverse aortic constriction (TAC) is a widely-used model of pressure overload-induced heart failure. An intrinsic limitation of the model is variability in the response to pressure overload even when employing a standard severity of stenosis. Few literature studies have explicitly reported the use of entry criteria or early predictors to mitigate variability and enrich outcomes in this model. METHODS: Eleven-week-old male C57BL/6J mice underwent TAC or sham surgery. Left ventricular (LV) function and dimensions were assessed by M-mode echocardiography at baseline (pre) and 3, 9 and 12weeks post-procedure (end-study). At 24h post-procedure, transverse aortic flow velocities were obtained for estimating trans-TAC pressure gradients. Invasive LV hemodynamic assessments were performed and terminal heart and lung weights obtained at end-study. RESULTS: TAC mice displayed early development of LV hypertrophy and wall thickening followed by the later development of LV chamber dilation, and progressive development of LV systolic and diastolic dysfunction. The use of a pre-defined trans-TAC pressure gradient criterion of 45-60mmHg did not affect end-study organ weight, echocardiographic and invasive hemodynamic outcomes. A post-hoc receiver operator characteristic (ROC) analysis identified early 3week echocardiographic measures of LVmass(echo) and ejection fraction, with threshold changes of ~+30% and -10% normalized to baseline respectively, as good predictors for multiple end-study organ weight, echocardiographic and invasive hemodynamic outcomes. DISCUSSION: This ROC analysis has identified early predictive threshold changes which may serve, alone or in combination, as entry criteria to enrich outcome in this model.


Assuntos
Modelos Animais de Doenças , Ecocardiografia/métodos , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Animais , Constrição , Insuficiência Cardíaca/etiologia , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Valor Preditivo dos Testes , Distribuição Aleatória , Função Ventricular Esquerda/fisiologia
10.
SAGE Open Med ; 5: 2050312117700057, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491305

RESUMO

INTRODUCTION: Despite the widespread use of the mouse transverse aortic constriction heart failure model, there are no reports on the characterization of the standard-of-care agent carvedilol in this model. METHODS: Left ventricular pressure overload was produced in mice by transverse aortic constriction between the innominate and left common carotid arteries. Carvedilol was administered at multiple dose levels (3, 10 and 30 mg/kg/day per os; yielding end-study mean plasma concentrations of 0.002, 0.015 and 0.044 µM, respectively) in a therapeutic design protocol with treatment initiated after the manifestation of left ventricular remodeling at 3 weeks post transverse aortic constriction and continued for 10 weeks. RESULTS: Carvedilol treatment in transverse aortic constriction mice significantly decreased heart rate and left ventricular dP/dt (max) at all dose levels consistent with ß-adrenoceptor blockade. The middle dose of carvedilol significantly decreased left ventricular weight, whereas the higher dose decreased total heart, left and right ventricular weight and wet lung weight compared to untreated transverse aortic constriction mice. The higher dose of carvedilol significantly increased cardiac performance as measured by ejection fraction and fractional shortening and decreased left ventricular end systolic volume consistent with the beneficial effect on cardiac function. End-study plasma sST-2 and Gal-3 levels did not differ among sham, transverse aortic constriction control and transverse aortic constriction carvedilol groups. Plasma brain natriuretic peptide concentrations were elevated significantly in transverse aortic constriction control animals (~150%) compared to shams in association with changes in ejection fraction and heart weight and tended to decrease (~30%, p = 0.10-0.12) with the mid- and high-dose carvedilol treatment. CONCLUSION: A comparison of carvedilol hemodynamic and structural effects in the mouse transverse aortic constriction model versus clinical use indicates a strong agreement in effect profiles preclinical versus clinical, providing important translational validation for this widely used animal model. The present plasma brain natriuretic peptide biomarker findings support the measurement of plasma natriuretic peptides in the mouse transverse aortic constriction model to extend the translational utility of the model.

11.
Cell Stem Cell ; 16(3): 289-301, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25683224

RESUMO

N(6)-methyladenosine (m(6)A) has been recently identified as a conserved epitranscriptomic modification of eukaryotic mRNAs, but its features, regulatory mechanisms, and functions in cell reprogramming are largely unknown. Here, we report m(6)A modification profiles in the mRNA transcriptomes of four cell types with different degrees of pluripotency. Comparative analysis reveals several features of m(6)A, especially gene- and cell-type-specific m(6)A mRNA modifications. We also show that microRNAs (miRNAs) regulate m(6)A modification via a sequence pairing mechanism. Manipulation of miRNA expression or sequences alters m(6)A modification levels through modulating the binding of METTL3 methyltransferase to mRNAs containing miRNA targeting sites. Increased m(6)A abundance promotes the reprogramming of mouse embryonic fibroblasts (MEFs) to pluripotent stem cells; conversely, reduced m(6)A levels impede reprogramming. Our results therefore uncover a role for miRNAs in regulating m(6)A formation of mRNAs and provide a foundation for future functional studies of m(6)A modification in cell reprogramming.


Assuntos
Adenina/análogos & derivados , Reprogramação Celular/fisiologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Adenina/metabolismo , Animais , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Metilação , Metiltransferases/metabolismo , Camundongos , Camundongos Transgênicos , Células-Tronco Pluripotentes/citologia
12.
Cell Res ; 24(2): 177-89, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24407421

RESUMO

The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism.


Assuntos
Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Processamento Alternativo , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Núcleo Celular/metabolismo , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Ligação Proteica , Interferência de RNA , Fatores de Processamento de RNA , RNA Interferente Pequeno/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
13.
Cell Res ; 24(12): 1403-19, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25412662

RESUMO

The role of Fat Mass and Obesity-associated protein (FTO) and its substrate N6-methyladenosine (m6A) in mRNA processing and adipogenesis remains largely unknown. We show that FTO expression and m6A levels are inversely correlated during adipogenesis. FTO depletion blocks differentiation and only catalytically active FTO restores adipogenesis. Transcriptome analyses in combination with m6A-seq revealed that gene expression and mRNA splicing of grouped genes are regulated by FTO. M6A is enriched in exonic regions flanking 5'- and 3'-splice sites, spatially overlapping with mRNA splicing regulatory serine/arginine-rich (SR) protein exonic splicing enhancer binding regions. Enhanced levels of m6A in response to FTO depletion promotes the RNA binding ability of SRSF2 protein, leading to increased inclusion of target exons. FTO controls exonic splicing of adipogenic regulatory factor RUNX1T1 by regulating m6A levels around splice sites and thereby modulates differentiation. These findings provide compelling evidence that FTO-dependent m6A demethylation functions as a novel regulatory mechanism of RNA processing and plays a critical role in the regulation of adipogenesis.


Assuntos
Adenosina/análogos & derivados , Adipócitos/citologia , Adipogenia , Oxigenases de Função Mista/metabolismo , Oxo-Ácido-Liases/metabolismo , Splicing de RNA , RNA Mensageiro/genética , Adenosina/metabolismo , Adipócitos/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Metilação , Camundongos , RNA Mensageiro/metabolismo
15.
Behav Brain Res ; 197(2): 284-91, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-18793675

RESUMO

Melanin-concentrating hormone (MCH) is an orexigenic and dipsogenic neuropeptide that has been reported to mediate acute behavioral and neuroendocrine stress-related responses via MCH(1) receptor activation in rodents. The purpose of the present investigation was to use the MCH(1) receptor antagonist SNAP 94847 (N-(3-{1-[4-(3,4-difluoro-phenoxy)-benzyl]-piperidin-4-yl}-4-methyl-phenyl)-isobutyramide) to determine the effects of MCH(1) receptor blockade on MCH-evoked adrenocorticotropic hormone (ACTH) release, chronic mild stress-induced anhedonia, stress-induced hyperthermia and forced swim stress-induced immobility. The appropriate dose range for testing SNAP 94847 was determined by measuring MCH-evoked water drinking. The corresponding occupancy of MCH(1) receptors in rat striatum was also measured across a broad dose range. Orally administered (p.o.) SNAP 94847 (1-10 mg/kg) corresponds to 30-60% occupancy at MCH(1) receptors and significantly blocks water drinking induced by the intracerebroventricular (i.c.v.) injection of MCH. MCH (i.c.v.) significantly elevates plasma levels of ACTH in rats, and SNAP 94847 (2.5 mg/kg, p.o.) blocks MCH-evoked ACTH release. Using the chronic mild stress paradigm, we show that repeated daily exposure to environmental stressors for 5 weeks significantly suppresses sucrose intake in rats, and that SNAP 94847 (1 mg/kg, BID) for 1-5 weeks restores baseline sucrose intake. Moreover, a single administration of SNAP 94847 attenuates stress-induced hyperthermia and the behavioral effects of forced swim stress with minimal effective doses of 2.5 and 30 mg/kg (p.o.), respectively. The regulation of ACTH release and reversal of the effects of chronic and acute stress by SNAP 94847 are suggestive of a role for MCH(1) receptor blockade in the treatment of disorders characterized by high allostatic load.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Piperidinas/farmacologia , Sistema Hipófise-Suprarrenal/fisiologia , Estresse Fisiológico/fisiologia , Administração Oral , Hormônio Adrenocorticotrópico/sangue , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Injeções Intravenosas , Injeções Intraventriculares , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Piperidinas/administração & dosagem , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Receptores do Hormônio Hipofisário/antagonistas & inibidores , Receptores do Hormônio Hipofisário/fisiologia , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA