Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(11): 4580-4588, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38348822

RESUMO

This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the N6-methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme. In both cases, amperometric transduction was performed on the surface of disposable electrodes after capturing the resulting HRP-tagged magnetic bioconjugates. Because of their increasing relevance in colorectal cancer (CRC) diagnosis and prognosis, miRNA let-7a and m6A methylation were selected. The proposed electrochemical bioplatforms showed attractive analytical and operational characteristics for the determination of the total and m6A-methylated target miRNA in less than 75 min. These bioplatforms, innovative in design and application, were applied to the analysis of total RNA samples extracted from cultured cancer cells with different metastatic profiles and from paired healthy and tumor tissues of patients diagnosed with CRC at different stages. The obtained results demonstrated, for the first time using electrochemical platforms, the potential of interrogating the target miRNA methylation level to discriminate the metastatic capacities of cancer cells and to identify tumor tissues and, in a pioneering way, the potential of the m6A methylation in miRNA let-7a to serve as a prognostic biomarker for CRC.


Assuntos
Técnicas Biossensoriais , Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/análise , Epigenoma , Hibridização de Ácido Nucleico/métodos , Anticorpos/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Prognóstico , Técnicas Biossensoriais/métodos
2.
Anal Bioanal Chem ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639792

RESUMO

Electrochemical biosensing continues to advance tirelessly, overcoming barriers that have kept it from leaving research laboratories for many years. Among them, its compromised performance in complex biological matrices due to fouling or receptor stability issues, the limitations in determining toxic and small analytes, and its use, conditioned to the commercial availability of commercial receptors and the exploration of natural molecular interactions, deserved to be highlighted. To address these challenges, in addition to the intrinsic properties of electrochemical biosensing, its coupling with biomimetic materials has played a fundamental role, among which bioinspired phage and peptide probes stand out. The versatility in design and employment of these probes has opened an unimaginable plethora of possibilities for electrochemical biosensing, improving their performance far beyond the development of highly sensitive and selective devices. The state of the art offers robust electroanalytical biotools, capable of operating in complex samples and with exciting opportunities to discover and determine targets regardless of their toxicity and size, the commercial availability of bioreceptors, and prior knowledge of molecular interactions. With all this in mind, this review offers a panoramic, novel, and updated vision of both the tremendous advances and opportunities offered by the combination of electrochemical biosensors with bioinspired phage and peptide probes and the challenges and research efforts that are envisioned in the immediate future.

3.
Anal Bioanal Chem ; 416(9): 2151-2172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37420009

RESUMO

In the era that we seek personalization in material things, it is becoming increasingly clear that the individualized management of medicine and nutrition plays a key role in life expectancy and quality of life, allowing participation to some extent in our welfare and the use of societal resources in a rationale and equitable way. The implementation of precision medicine and nutrition are highly complex challenges which depend on the development of new technologies able to meet important requirements in terms of cost, simplicity, and versatility, and to determine both individually and simultaneously, almost in real time and with the required sensitivity and reliability, molecular markers of different omics levels in biofluids extracted, secreted (either naturally or stimulated), or circulating in the body. Relying on representative and pioneering examples, this review article critically discusses recent advances driving the position of electrochemical bioplatforms as one of the winning horses for the implementation of suitable tools for advanced diagnostics, therapy, and precision nutrition. In addition to a critical overview of the state of the art, including groundbreaking applications and challenges ahead, the article concludes with a personal vision of the imminent roadmap.


Assuntos
Medicina de Precisão , Qualidade de Vida , Animais , Cavalos , Reprodutibilidade dos Testes , Biomarcadores
4.
Mikrochim Acta ; 191(7): 369, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834823

RESUMO

A trendsetting direct competitive-based biosensing tool has been developed and implemented for the determination of the polyunsaturated fatty acid arachidonic acid (ARA), a highly significant biological regulator with decisive roles in viral infections. The designed methodology involves a competitive reaction between the target endogenous ARA and a biotin-ARA competitor for the recognition sites of anti-ARA antibodies covalently attached to the surface of carboxylic acid-coated magnetic microbeads (HOOC-MµBs), followed by the enzymatic label of the biotin-ARA residues with streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The resulting bioconjugates were magnetically trapped onto the sensing surface of disposable screen-printed carbon transducers (SPCEs) to monitor the extent of the biorecognition reaction through amperometry. The operational functioning of the exhaustively optimized and characterized immunosensing bioplatform was highly convenient for the quantitative determination of ARA in serum samples from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-) and respiratory syncytial virus (RSV)-infected individuals in a rapid, affordable, trustful, and sensitive manner.


Assuntos
Ácido Araquidônico , Técnicas Biossensoriais , COVID-19 , SARS-CoV-2 , Humanos , Ácido Araquidônico/sangue , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Técnicas Biossensoriais/métodos , SARS-CoV-2/imunologia , Peroxidase do Rábano Silvestre/química , Vírus Sinciciais Respiratórios/imunologia , Imunoensaio/métodos , Estreptavidina/química , Biotina/química , Limite de Detecção
5.
Anal Bioanal Chem ; 415(11): 2045-2057, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36344668

RESUMO

The glycosylation status of proteins is increasingly used as biomarker to improve the reliability in the diagnosis and prognosis of diseases as relevant as cancer. This feeds the need for tools that allow its simple and reliable analysis and are compatible with applicability in the clinic. With this objective in mind, this work reports the first bioelectronic immunoplatforms described to date for the determination of glycosylated haptoglobin (Hp) and the simultaneous determination of total and glycosylated Hp. The bioelectronic immunoplatform is based on the implementation of non-competitive bioassays using two different antibodies or an antibody and a lectin on the surface of commercial magnetic microcarriers. The resulting bioconjugates are labeled with the horseradish peroxidase (HRP) enzyme, and after their magnetic capture on disposable electroplatforms, the amperometric transduction using the H2O2/hydroquinone (HQ) system allows the single or multiple detection. The developed immunoplatform achieves limits of detection (LODs) of 0.07 and 0.46 ng mL-1 for total and glycosylated Hp in buffer solution, respectively. The immunoplatform allows accurate determination using simple and relatively short protocols (approx. 75 min) of total and glycosylated Hp in the secretomes of in vitro-cultured colorectal cancer (CRC) cells with different metastatic potentials, which is not feasible, due to lack of sensitivity, by means of some commercial ELISA kits and Western blot methodology.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Haptoglobinas , Peróxido de Hidrogênio , Reprodutibilidade dos Testes , Ensaio de Imunoadsorção Enzimática , Anticorpos , Técnicas Biossensoriais/métodos
6.
Anal Bioanal Chem ; 414(1): 399-412, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33635388

RESUMO

Metastasis is responsible for about 90% of cancer-associated deaths. In the context of solid tumors, the low oxygen concentration in the tumor microenvironment (hypoxia) is one of the key factors contributing to metastasis. Tumor cells adapt to these conditions by overexpressing certain proteins such as programmed death ligand 1 (PD-L1) and hypoxia-inducible factor 1 alpha (HIF-1α). However, the determination of these tumor hypoxia markers that can be used to follow-up tumor progression and improve the efficiency of therapies has been scarcely addressed using electrochemical biosensors. In this work, we report the first electrochemical bioplatform for the determination of PD-L1 as well as the first one allowing its simultaneous determination with HIF-1α. The target proteins were captured and enzymatically labeled on magnetic microbeads and amperometric detection was undertaken on the surface of screen-printed dual carbon electrodes using the hydrogen peroxide/peroxidase/hydroquinone system. Sandwich immunoassays were implemented for both the HIF-1α and PD-L1 sensors and the analytical characteristics were evaluated providing LOD values of 86 and 279 pg mL-1 for the amperometric determination of PD-L1 and HIF-1α standards, respectively. The developed electrochemical immunoplatforms are competitive versus the only electrochemical immunosensor reported for the determination of HIF-1α and the "gold standard" ELISA methodology for the single determination of both proteins in terms of assay time, compatibility with the simultaneous determination of both proteins making their use suitable for untrained users at the point of attention. The dual amperometric immunosensor was applied to the simultaneous determination of HIF-1α and PD-L1 in cancer cell lysates. The analyses lasted only 2 h and just 0.5 µg of the sample was required.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Biomarcadores Tumorais/análise , Técnicas Biossensoriais/métodos , Humanos , Hipóxia , Imunoensaio , Hipóxia Tumoral
7.
Mikrochim Acta ; 189(4): 143, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35286499

RESUMO

A dual immunosensor is reported for the simultaneous determination of two important immunity-related cytokines: BAFF (B cell activation factor) and APRIL (a proliferation-induced signal). Sandwich-type immunoassays with specific antibodies (cAbs) and a strategy for signal amplification based on labelling the detection antibodies (dAbs) with binary MoS2/MWCNTs nanostructures and using horseradish peroxidase (HRP) were implemented. Amperometric detection was carried out at screen-printed dual carbon electrodes (SPdCEs) through the hydroquinone HQ/H2O2 system. The developed dual immunosensor provided limit of detection (LOD) of 0.08 and 0.06 ng mL-1 for BAFF and APRIL, respectively, and proved to be useful for the determination of both cytokines in cancer cell lysates and serum samples from patients diagnosed with autoimmune diseases and cancer. The obtained results agreed with those found using ELISA methodologies.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Anticorpos , Técnicas Biossensoriais/métodos , Proliferação de Células , Citocinas , Técnicas Eletroquímicas , Humanos , Peróxido de Hidrogênio , Imunoensaio/métodos , Molibdênio
8.
Angew Chem Int Ed Engl ; 61(28): e202203662, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35507573

RESUMO

The development of versatile and sensitive biotools to quantify specific SARS-CoV-2 immunoglobulins in SARS-CoV-2 infected and non-infected individuals, built on the surface of magnetic microbeads functionalized with nucleocapsid (N) and in-house expressed recombinant spike (S) proteins is reported. Amperometric interrogation of captured N- and S-specific circulating total or individual immunoglobulin (Ig) isotypes (IgG, IgM, and IgA), subsequently labelled with HRP-conjugated secondary antibodies, was performed at disposable single or multiplexed (8×) screen-printed electrodes using the HQ/HRP/H2 O2 system. The obtained results using N and in-house expressed S ectodomains of five SARS-CoV-2 variants of concern (including the latest Delta and Omicron) allow identification of vulnerable populations from those with natural or acquired immunity, monitoring of infection, evaluation of vaccine efficiency, and even identification of the variant responsible for the infection.


Assuntos
Técnicas Biossensoriais , COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Imunidade , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
9.
Anal Bioanal Chem ; 413(3): 799-811, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32474723

RESUMO

Early diagnosis in primary care settings can increase access to therapies and their efficiency as well as reduce health care costs. In this context, we report in this paper the development of a disposable immunoplatform for the rapid and simultaneous determination of two protein biomarkers recently reported to be involved in the pathological process of neurodegenerative disorders (NDD), tau protein (tau), and TAR DNA-binding protein 43 (TDP-43). The methodology involves implementation of a sandwich-type immunoassay on the surface of dual screen-printed carbon electrodes (dSPCEs) electrochemically grafted with p-aminobenzoic acid (p-ABA), which allows the covalent immobilization of a gold nanoparticle-poly(amidoamine) (PAMAM) dendrimer nanocomposite (3D-Au-PAMAM). This scaffold was employed for the immobilization of the capture antibodies (CAbs). Detector antibodies labeled with horseradish peroxidase (HRP) and amperometric detection at - 0.20 V (vs. Ag pseudo-reference electrode) using the H2O2/hydroquinone (HQ) system were used. The developed methodology exhibits high sensitivity and selectivity for determining the target proteins, with detection limits of 2.3 and 12.8 pg mL-1 for tau and TDP-43, respectively. The simultaneous determination of tau and TDP-43 was accomplished in raw plasma samples and brain tissue extracts from healthy individuals and NDD-diagnosed patients. The analysis can be performed in just 1 h using a simple one-step assay protocol and small sample amounts (5 µL plasma and 2.5 µg brain tissue extracts). Graphical abstract.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dendrímeros/química , Ouro/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Doenças Neurodegenerativas/diagnóstico , Poliaminas/química , Proteínas tau/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a DNA/sangue , Eletrodos , Humanos , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/metabolismo , Proteínas tau/sangue
10.
Mikrochim Acta ; 188(12): 416, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757512

RESUMO

Janus particles are a unique type of materials combining two different functionalities in a single unit. This allows the combination of different analytical properties leading to new analytical capabilities, i.e., enhanced fluid mixing to increase sensitivity with targeting capturing abilities and unique advantages in terms of multi-functionality and versatility of modification, use, and operation both in static and dynamic modes. The aim of this conceptual review is to cover recent (over the last 5 years) advances in the use of Janus microparticles and micromotors in (bio)-sensing. First, the role of different materials and synthetic routes in the performance of Janus particles are described. In a second main section, electrochemical and optical biosensing based on Janus particles and motors are covered, including in vivo and in vitro methodologies as the next biosensing generation. Current challenges and future perspectives are provided in the conclusions section.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanopartículas Multifuncionais , Nanopartículas/química
11.
Anal Chem ; 92(7): 5604-5612, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32073832

RESUMO

This work reports the first bioplatform able to determine electrochemically 5-hydroxymethylcytosine (5-hmC) methylation events at localized sites and single-base sensitivity. The described bioplatform relies on a specific antibody (anti-5-hmC), further conjugated with commercial bioreagents loaded with multiple horseradish peroxidase (HRP) molecules, recognizing the epimark in a target DNA, captured through hybridization onto streptavidin-magnetic microbeads (Strep-MBs) modified with a complementary DNA capture probe. The electrochemical detection is performed by amperometry (-0.20 V vs Ag pseudoreference electrode) at disposable screen-printed carbon electrodes (SPCEs) in the presence of H2O2/hydroquinone (HQ) upon magnetic capture of the modified MBs onto the SPCE. The use of the commercial bioreagents ProtA-polyHRP80 and Histostar, very scarcely explored so far in electrochemical biosensors, provides high sensitivities for a synthetic target DNA sequence with a unique 5-hmC in the promoter region of MGMT tumor suppressor gene. Amplification factors of 43.6 and 55.2 were achieved using ProtA-polyHRP80 or Histostar, respectively, compared to the conventional secondary antibody labeling. This amplification was crucial to detect methylation events at single-nucleotide resolution achieving limits of detection (LODs) of 23.0 and 13.2 pM, respectively, without any target DNA amplification. The ProtA-polyHRP80-based bioplatform, selected as a compromise between sensitivity and cost per determination, exhibited full discrimination toward the target 5-hmC against the closely related 5-mC. In addition, the bioplatform detected 5-hmC at the regional level (MGMT promoter region) in just 10 ng of genomic DNA (gDNA, ∼2700 genomes) extracted from cancer cells and tissues from colorectal cancer (CRC) patients within 60 min.


Assuntos
Metilação de DNA , Eletroquímica/métodos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Linhagem Celular Tumoral , Humanos , Limite de Detecção
12.
Analyst ; 145(13): 4680-4687, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32458832

RESUMO

This paper reports a dual electrochemical biosensor involving carboxylated- or neutravidin-functionalized magnetic microbeads and dual screen-printed carbon electrodes for the simultaneous determination of rheumatoid factor (RF) and anti-cyclic citrullinated peptide (CCPA) autoantibodies used as biomarkers for the detection of rheumatoid arthritis autoimmune disease. Sandwich-type biosensors involving Fc fragments of IgG Fc(IgG) and biotinylated cyclic cytrullinated peptide (CCP-biotin) to form CCP-biotin-Neutr-MBs for the specific immobilization of RF and CCPA, respectively, as well as conjugation with HRP-IgM and HRP-IgG for RF and CCPA, respectively, were prepared. Amperometric detection was performed at -0.20 V vs. Ag pseudo-reference electrode using the H2O2/hydroquinone (HQ) system upon capturing the bioconjugates onto the corresponding working electrode (WE1 or WE2) of SPCdEs. The dual biosensor exhibits high sensitivity for RF and CCPA with LOD values of 0.8 and 2.5 IU mL-1, respectively. The simultaneous determination can be completed in about two hours using a simple protocol and a sample volume (25 µL) four times smaller than that required by the ELISA method. The dual electrochemical biosensor was used for the determination of both target biomarkers in human serum.


Assuntos
Anticorpos Antiproteína Citrulinada/sangue , Artrite Reumatoide/diagnóstico , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Fator Reumatoide/sangue , Anticorpos Antiproteína Citrulinada/imunologia , Anticorpos Imobilizados/imunologia , Artrite Reumatoide/sangue , Biomarcadores/sangue , Técnicas Biossensoriais/instrumentação , Carbono/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Humanos , Imunoensaio , Fragmentos Fc das Imunoglobulinas/imunologia , Limite de Detecção , Fator Reumatoide/imunologia
13.
Anal Bioanal Chem ; 412(24): 6177-6188, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31989193

RESUMO

Proteases are involved in cancer' taking part in immune (dis)regulation, malignant progression and tumour growth. Recently, it has been found that expression levels of one of the members of the serine protease family, trypsin, is upregulated in human cancer cells of several organs, being considered as a specific cancer biomarker. Considering the great attention that electrochemical peptide sensors have nowadays, in this work, we propose a novel electroanalytical strategy for the determination of this important biomolecule. It implies the immobilization of a short synthetic peptide sequence, dually labelled with fluorescein isothiocyanate (FITC) and biotin, onto neutravidin-modified magnetic beads (MBs), followed by the peptide digestion with trypsin. Upon peptide disruption, the modified MBs were incubated with a specific fluorescein Fab fragment antibody labelled with horseradish peroxidase (HRP-antiFITC) and magnetically captured on the surface of a screen-printed carbon electrode (SPCE), where amperometric detection was performed using the hydroquinone (HQ)/HRP/H2O2 system. The biosensor exhibited a good reproducibility of the measurements (RSD 3.4%, n = 10), and specificity against other proteins and proteases commonly found in biological samples. This work reports the first quantitative data so far on trypsin expression in human cell lysates. The developed bioplatform was used for the direct determination of this protease in lysates from pancreatic cancer, cervix carcinoma and kidney cells in only 3 h and 30 min using low amounts (~ 0.1 µg) of raw extracts. Graphical abstract.


Assuntos
Técnicas Eletroquímicas/métodos , Metástase Neoplásica , Neoplasias Pancreáticas/enzimologia , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Técnicas Biossensoriais , Calibragem , Humanos , Oxirredução , Neoplasias Pancreáticas/patologia , Reprodutibilidade dos Testes
14.
Anal Bioanal Chem ; 412(21): 5031-5041, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31745609

RESUMO

This paper reports a simple electrochemical strategy for the determination of microRNAs (miRNAs) using a commercial His-Tag-Zinc finger protein (His-Tag-ZFP) that binds preferably (but non-sequence specifically) RNA hybrids over ssRNAs, ssDNAs, and dsDNAs. The strategy involves the use of magnetic beads (His-Tag-Isolation-MBs) as solid support to capture the conjugate formed in homogenous solution between His-Tag-ZFP and the dsRNA homohybrid formed between the target miRNA (miR-21 selected as a model) and a biotinylated synthetic complementary RNA detector probe (b-RNA-Dp) further conjugated with a streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The electrochemical detection is carried out by amperometry at disposable screen-printed carbon electrodes (SPCEs) (- 0.20 V vs Ag pseudo-reference electrode) upon magnetic capture of the resultant magnetic bioconjugates and H2O2 addition in the presence of hydroquinone (HQ). The as-prepared biosensor exhibits a dynamic concentration range from 3.0 to 100 nM and a detection limit (LOD) of 0.91 nM for miR-21 in just ~ 2 h. An acceptable discrimination was achieved between the target miRNA and other non-target nucleic acids (ssDNA, dsDNA, ssRNA, DNA-RNA, miR-122, miR-205, and single central- or terminal-base mismatched sequences). The biosensor was applied to the analysis of miR-21 from total RNA (RNAt) extracted from epithelial non-tumorigenic and adenocarcinoma breast cells without target amplification, pre-concentration, or reverse transcription steps. The versatility of the methodology due to the ZFP's non-sequence-specific binding behavior makes it easily extendable to determine any target RNA only by modifying the biotinylated detector probe.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , MicroRNAs/análise , Dedos de Zinco , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Limite de Detecção
15.
Mikrochim Acta ; 187(8): 444, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661767

RESUMO

The preparation of an integrated biosensor for the easy, fast, and sensitive determination of miRNAs is described based on a direct hybridization format and a label-free voltammetric detection. The biosensor involves a disposable carbon electrode substrate doubly nanostructured with reduced graphene oxide (rGO) and AuNPs modified with pyrene carboxylic acid (PCA) and 6-ferrocenylhexanethiol (Fc-SH), respectively. A synthetic amino terminated DNA capture probe was covalently immobilized on the CO2H moieties of PCA/rGO, while Fc-SH was used as a signaling molecule. Differential pulse voltammetry was employed to record the decrease in the oxidation peak current of Fc after the hybridization due to the hindering of the electron transfer upon the formation of the DNA-RNA duplex on the electrode surface. The stepwise biosensor preparation was characterized by surface and electrochemical techniques showing the role played by each biosensor component as well as the reliability of the target miRNA determination. The determination of the oncogene miRNA-21 synthetic target allowed quantification in the low femtomolar range (LOD of 5 fM) with a high discrimination of single-base mismatched sequences in a single 30-min incubation step. The bioplatform allowed the determination of the target miRNA in a small amount of total RNA extracted from breast cancer (BC) cells or directly in serum samples collected from BC patients without the need for prior extraction, purification, amplification, or reverse transcription of the genetic material and with no matrix effect. Graphical abstract.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , MicroRNAs/sangue , Neoplasias da Mama/sangue , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Ouro/química , Grafite/química , Humanos , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Nanopartículas Metálicas/química , MicroRNAs/genética , Hibridização de Ácido Nucleico
16.
Mikrochim Acta ; 187(8): 423, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32621150

RESUMO

Over the past decade, artificial nanomaterials that exhibit properties similar to those of enzymes are gaining attraction in electrochemical biosensing as highly stable and low-cost alternatives to enzymes. This review article discusses the main features of the various nanomaterials (metal oxide, metal, and carbon-based materials) explored so far to mimic different kinds of enzymes. The unprecedented opportunities imparted by these functional nanomaterials or their nanohybrids, mostly providing peroxidase-like activity, in electrochemical affinity biosensing are critically discussed mainly in connection with their use as catalytic labels or electrode surface modifiers by highlighting representative strategies reported in the past 5 years with application in the food, environmental, and biomedical fields. Apart from outlining the pros and cons of nanomaterial-based enzyme mimetics arising from the impressive development they have experienced over the last few years, current challenges and future directions for achieving their widespread use and exploiting their full potential in the development of electrochemical biosensors are discussed. Graphical abstract.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Anticorpos Imobilizados/imunologia , Aptâmeros de Nucleotídeos/química , Bactérias/imunologia , Bactérias/isolamento & purificação , Catálise , Humanos , Imunoensaio
17.
Sensors (Basel) ; 20(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911860

RESUMO

The excellent capabilities demonstrated over the last few years by electrochemical affinity biosensors should be largely attributed to their coupling with particular nanostructures including dendrimers, DNA-based nanoskeletons, molecular imprinted polymers, metal-organic frameworks, nanozymes and magnetic and mesoporous silica nanoparticles. This review article aims to give, by highlighting representative methods reported in the last 5 years, an updated and general overview of the main improvements that the use of such well-ordered nanomaterials as electrode modifiers or advanced labels confer to electrochemical affinity biosensors in terms of sensitivity, selectivity, stability, conductivity and biocompatibility focused on food and environmental applications, less covered in the literature than clinics. A wide variety of bioreceptors (antibodies, DNAs, aptamers, lectins, mast cells, DNAzymes), affinity reactions (single, sandwich, competitive and displacement) and detection strategies (label-free or label-based using mainly natural but also artificial enzymes), whose performance is substantially improved when used in conjunction with nanostructured systems, are critically discussed together with the great diversity of molecular targets that nanostructured affinity biosensors are able to quantify using quite simple protocols in a wide variety of matrices and with the sensitivity required by legislation. The large number of possibilities and the versatility of these approaches, the main challenges to face in order to achieve other pursued capabilities (development of antifouling, continuous operation, wash-, calibration- and reagents-free devices, regulatory or Association of Official Analytical Chemists, AOAC, approval) and decisive future actions to achieve the commercialization and acceptance of these devices in our daily routine are also noted at the end.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental , Nanoestruturas , DNA , Técnicas Eletroquímicas
18.
Anal Chem ; 91(17): 11266-11274, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31397563

RESUMO

This paper reports the first immunoplatforms for the detection of adulteration in milk with milk or colostrum from other animals. The developed electrochemical bioplatforms allow the reliable determination of immunoglobulins G (IgGs) from cows, sheeps, or goats. They rely on sandwiching each animal species-specific IgGs with selective antibody pairs [unconjugated and conjugated with horseradish peroxidase (HRP)] onto magnetic microbeads (MBs) used as solid supports and amperometric transduction with the H2O2/hydroquinone (HQ) system at disposable electrodes. The immunoplatforms allow achieving limits of detection (LODs) of 0.74, 0.82, and 0.66 ng mL-1 for bovine, ovine, and caprine IgGs, respectively, which are lower than those obtained with conventional enzyme-linked immunosorbent assay (ELISA) methodologies and in 2-5 times shorter time. The bioplatforms were successfully applied to the determination of the individual content of the target IgGs in milk samples of different animals (cow, sheep, and goat) and type (colostrum, raw, and pasteurized), without matrix effect and after just a sample dilution. They were also applied to the detection of adulteration with milks from other animals at levels below than those required by the European legislation (1.0%, v/v). The possibility to detect milk adulteration with colostrum using a strategy based on the measurement of the total content of the three target IgGs in raw milks is also demonstrated. Multiplexing platforms were constructed to be used in routine surveillance of milk. They are able to provide in a single run and in just 30 min relevant information regarding the milk sample including its animal origin, the undergone heat treatment, and whether it was adulterated with milk or colostrum from other species.


Assuntos
Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/análise , Leite/química , Animais , Técnicas Biossensoriais , Bovinos , Técnicas Eletroquímicas , Eletrodos , Cabras , Peroxidase do Rábano Silvestre/metabolismo , Imunoglobulina G/metabolismo , Ovinos
19.
Anal Bioanal Chem ; 411(9): 1791-1806, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30074089

RESUMO

Electrochemical nucleic-acid-based biosensing strategies involving the use of nanoparticles as electrode modifiers and as advanced labels are attractive options for the determination of substances that are relevant clinically, from an environmental perspective, and to food analysis, as these strategies are able to overcome some of the well-known limitations of conventional methodologies for routine applications. In this article, we provide a selective overview of current strategies for nucleic acid electrochemical biosensing based on nanoparticles, in order to demonstrate the relevance and potential of these strategies to readers familiar with this field and to non-experts. The benefits provided by the use of nanoparticles, including enhanced analytical performance of the resulting electrochemical biosensors, as well as the main challenges to be solved and potential future advances in this field are discussed.


Assuntos
Técnicas Biossensoriais , Nanopartículas/química , Ácidos Nucleicos/análise , Técnicas Eletroquímicas/métodos , Análise de Alimentos/métodos , Análise Espectral/métodos
20.
Anal Bioanal Chem ; 411(19): 4597-4604, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30552492

RESUMO

Edible electrochemical biosensors with remarkable prolonged resistance to extreme acidic conditions are described for direct glucose sensing in gastrointestinal (GI) fluids of different pH ranges and compositions. Such direct and stable glucose monitoring is realized using carbon-paste biosensors prepared from edible materials, such as olive oil and activated charcoal, shown to protect the activity of the embedded glucose oxidase (GOx) enzyme from strongly acidic conditions. The enzymatic resistance to low-pH deactivation allowed performing direct glucose monitoring in strong acidic environments (pH 1.5) over a 90-min period, while the response of conventional screen-printed (SP) biosensors decreased significantly following 10-min incubation in the same fluid. The developed edible biosensor displayed a linear response between 2 and 10 mM glucose with sensitivity depending on the pH of the corresponding GI fluid. In addition, coating the electrode surface with pH-responsive enteric coatings (Eudragit® L100 and Eudragit® E PO), of different types and densities, allows tuning the sensor activation in gastric and intestinal fluids at specific predetermined times. The attractive characteristics and sensing performance of these edible electrochemical biosensors, along with their pH-responsive actuation, hold considerable promise for the development of ingestible devices towards the biosensing of diverse target analytes after prolonged incubation in challenging body fluids. Graphical Abstract Edible biosensors allow direct electrochemical sensing in different gastrointestinal fluids and display remarkable prolonged resistance to extreme acidic conditions.


Assuntos
Técnicas Biossensoriais , Líquidos Corporais/metabolismo , Técnicas Eletroquímicas/métodos , Trato Gastrointestinal/metabolismo , Glucose/metabolismo , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA