Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
J Am Chem Soc ; 146(13): 9422-9433, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501228

RESUMO

We report a neutral high-spin diradical of chiral C2-symmetric bis[5]diazahelicene with ΔEST ≈ 0.4 kcal mol-1, as determined by EPR spectroscopy/SQUID magnetometry. The diradical is the most persistent among all high-spin aminyl radicals reported to date by a factor of 20, with a half-life of up to 6 days in 2-MeTHF at room temperature. Its triplet ground state and excellent persistence may be associated with the unique spin density distribution within the dihydrophenazine moiety, which characterizes two effective 3-electron C-N bonds analogous to the N-O bond of a nitroxide radical. The enantiomerically enriched (ee ≥ 94%) (MM)- and (PP)-enantiomers of the precursors to the diradicals are obtained by either preparative chiral supercritical fluid chromatography or resolution via functionalization with the chiral auxiliary of the C2-symmetric racemic tetraamine. The barrier for the racemization of the solid tetraamine is ΔG‡ = 43 ± 0.01 kcal mol-1 in the 483-523 K range. The experimentally estimated lower limit of the barrier for the racemization of a diradical, ΔG‡ ≥ 26 kcal mol-1 in 2-MeTHF at 293 K, is comparable to the DFT-determined barrier of ΔG‡ = 31 kcal mol-1 in the gas phase at 298 K. While the enantiomerically pure tetraamine displays strong chiroptical properties, with anisotropy factor |g| = |Δε|/ε = 0.036 at 376 nm, |g| ≈ 0.005 at 548 nm of the high-spin diradical is comparable to that recently reported triplet ground-state diradical dication. Notably, the radical anion intermediate in the generation of diradical exhibits a large SOMO-HOMO inversion, SHI = 35 kcal mol-1.

2.
Inorg Chem ; 63(22): 10221-10229, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38780069

RESUMO

The reaction of equimolar trimethylsilyldiazomethyllithium (LiTMSD) with high spin (S = 2) PhB(AdIm)3FeCl (PhB(AdIm)3- = tris(3-adamantylimidazol-2-ylidene)phenylborate) affords the corresponding N-nitrilimido complex PhB(AdIm)3Fe-N═N═C(SiMe3). This complex can be converted to the thermodynamically more favorable C-isocyanoamido isomer PhB(AdIm)3Fe-C═N═N(SiMe3) by reaction with an additional equivalent of LiTMSD. While the iron(II) complexes are four-coordinate, the diazomethane is bound side-on in the iron(I) congener PhB(AdIm)3Fe(N,N'-κ2-N2C(H)Si(CH3)3). The latter complex adopts high spin (S = 3/2) ground state and features an unusually weak C-H bond. Photolysis of the iron(II) complexes induces N═N bond cleavage, with the iron(II) cyanide PhB(AdIm)3Fe-C≡N and iron(IV) nitride PhB(AdIm)3Fe≡N complexes being the major products of the reaction. The same products are obtained when the iron(I) complex is photolyzed or treated with a fluoride source. The trimethylsilyldiazomethane-derived ligand disassembly reactions are contrasted with those observed for related tris(carbene)amine complexes.

3.
Angew Chem Int Ed Engl ; : e202409070, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969622

RESUMO

Steric manipulation is a known concept in molecular recognition but there is currently no linear free energy relationship correlating sterics to the stability of receptor-anion complexes nor to the reactivity of the bound anion. By analogy to Tolman cone angles in cation coordination chemistry, we explore how to define and correlate cone angles of organo-trifluoroborates (R-BF3-) to the affinities observed for cyanostar-anion binding. We extend the analogy to a rare investigation of reactivity and how it changes upon anion binding. The substituent on the anion is used to define the cone angle, θ. A series of 10 anions were studied including versions with ethynyl, ethylene, and ethyl substituents that were selected to tune steric bulk across the sp, sp2 and sp3 hybridized a-carbons bearing 0, 1 and 2 hydrogen atoms. A linear relationship between affinity and cone angle is observed for anions bearing substituents larger than the -BF3- headgroup. This correlation predicted affinities of two new anions to within ±5%. We explored how complexation affects the reactivity of fluoride exchange. The yield of fluoride transfer from R-BF3- to Lewis acid triphenylborane is correlated with cone angle. We predict that other rigid macrocycles, like commercially available bambusuril, could follow these trends.

4.
J Am Chem Soc ; 145(24): 13335-13346, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37285418

RESUMO

Open-shell organic molecules, including S = 1/2 radicals, may provide enhanced properties for several emerging technologies; however, relatively few synthesized to date possess robust thermal stability and processability. We report the synthesis of S = 1/2 biphenylene-fused tetrazolinyl radicals 1 and 2. Both radicals possess near-perfect planar structures based on their X-ray structures and density-functional theory (DFT) computations. Radical 1 possesses outstanding thermal stability as indicated by the onset of decomposition at 269 °C, based on thermogravimetric analysis (TGA) data. Both radicals possess very low oxidation potentials <0 V (vs. SCE) and their electrochemical energy gaps, Ecell ≈ 0.9 eV, are rather low. Magnetic properties of polycrystalline 1 are characterized by superconducting quantum interference device (SQUID) magnetometry revealing a one-dimensional S = 1/2 antiferromagnetic Heisenberg chain with exchange coupling constant J'/k ≈ -22.0 K. Radical 1 in toluene glass possesses a long electron spin coherence time, Tm ≈ 7 µs in the 40-80 K temperature range, a property advantageous for potential applications as a molecular spin qubit. Radical 1 is evaporated under ultrahigh vacuum (UHV) forming assemblies of intact radicals on a silicon substrate, as confirmed by high-resolution X-ray photoelectron spectroscopy (XPS). Scanning electron microscope (SEM) images indicate that the radical molecules form nanoneedles on the substrate. The nanoneedles are stable for at least 64 hours under air as monitored by using X-ray photoelectron spectroscopy. Electron paramagnetic resonance (EPR) studies of the thicker assemblies, prepared by UHV evaporation, indicate radical decay according to first-order kinetics with a long half-life of 50 ± 4 days at ambient conditions.

5.
J Am Chem Soc ; 145(47): 25726-25736, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963181

RESUMO

We report complex formation between the chloroacetamide 2,6-diazaadamantane nitroxide radical (ClA-DZD) and cucurbit[7]uril (CB-7), for which the association constant in water, Ka = 1.9 × 106 M-1, is at least 1 order of magnitude higher than the previously studied organic radicals. The radical is highly immobilized by CB-7, as indicated by the increase in the rotational correlation time, τrot, by a factor of 36, relative to that in the buffer solution. The X-ray structure of ClA-DZD@CB-7 shows the encapsulated DZD guest inside the undistorted CB-7 host, with the pendant group protruding outside. Upon addition of CB-7 to T4 Lysozyme (T4L) doubly spin-labeled with the iodoacetamide derivative of DZD, we observe the increase in τrot and electron spin coherence time, Tm, along with the narrowing of interspin distance distributions. Sensitivity of the DEER measurements at 83 K increases by a factor 4-9, compared to the common spin label such as MTSL, which is not affected by CB-7. Interspin distances of 3 nm could be reliably measured in water/glycerol up to temperatures near the glass transition/melting temperature of the matrix at 200 K, thus bringing us closer to the goal of supramolecular recognition-enabled long-distance DEER measurements at near physiological temperatures. The X-ray structure of DZD-T4L 65 at 1.12 Å resolution allows for unambiguous modeling of the DZD label (0.88 occupancy), indicating an undisturbed structure and conformation of the protein.


Assuntos
Proteínas , Água , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica , Água/química
6.
Chemistry ; 29(68): e202302339, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615829

RESUMO

The prevalence of anion-cation contacts in biomolecular recognition under aqueous conditions suggests that ionic interactions should dominate the binding of anions in solvents across both high and low polarities. Investigations of this idea using titrations in low polarity solvents are impaired by interferences from ion pairing that prevent a clear picture of binding. To address this limitation and test the impact of ion-ion interactions across multiple solvents, we quantified chloride binding to a cationic receptor after accounting for ion pairing. In these studies, we created a chelate receptor using aryl-triazole CH donors and a quinolinium unit that directs its cationic methyl inside the binding pocket. In low-polarity dichloromethane, the 1 : 1 complex (log K1 : 1 ~ 7.3) is more stable than neutral chelates, but fortuitously comparable to a preorganized macrocycle (log K1 : 1 ~ 6.9). Polar acetonitrile and DMSO diminish stabilities of the charged receptor (log K1 : 1 ~ 3.7 and 1.9) but surprisingly 100-fold more than the macrocycle. While both receptors lose stability by dielectric screening of electrostatic stability, the cationic receptor also pays additional costs of organization. Thus even though the charged receptor has stronger binding in apolar solvents, the uncharged receptor has more anion affinity in polar solvents.


Assuntos
Água , Solventes , Ânions/química , Água/química
7.
J Am Chem Soc ; 144(4): 1786-1794, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076249

RESUMO

The presence of redox innocent metal ions has been proposed to modulate the reactivity of metal ligand multiple bonds; however, insight from structure/function relationships is limited. Here, alkali metal reduction of the Fe(III) imido complex [Ph2B(tBuIm)2Fe═NDipp] (1) provides the series of structurally characterized Fe(II) imido complexes [Ph2B(tBuIm)2Fe═NDippLi(THF)2] (2), [Ph2B(tBuIm)2Fe═NDippNa(THF)3] (3), and [Ph2B(tBuIm)2Fe═NDippK]2 (4), in which the alkali metal cations coordinate the imido ligand. Structural investigations demonstrate that the alkali metal ions modestly lengthen the Fe═N bond distance from that in the charge separated complex [Ph2B(tBuIm)2Fe═NDipp][K(18-C-6)THF2] (5), with the longest bond observed for the smallest alkali metal ion. In contrast to 5, the imido ligands in 2-4 can be protonated and alkylated to afford Fe(II) amido complexes. Combined experimental and computational studies reveal that the alkali metal polarizes the Fe═N bond, and the basicity of imido ligand increases according to 5 < 4 ≈ 3 < 2. The basicity of the imido ligands influences the relative rates of reaction with 1,4-cyclohexadiene, specifically by gating access to complex 5, which is the species that is active for HAT. All complexes 2-4 react with benzophenone form metastable Fe(II) intermediates that subsequently eliminate the metathesis product Ph2C═NDipp, with relative rates dependent on the alkali metal ion. By contrast, the same reaction with 5 does not lead to the formation of Ph2C═NDipp. These results demonstrate that the coordination of alkali metal ions dictate both the structure and reactivity of the imido ligand and moreover can direct the reactivity of reaction intermediates.

8.
J Am Chem Soc ; 144(43): 20047-20055, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36255282

RESUMO

Aspects of the proposed pathway combining chain-end and enantiomorphic site control for the stereospecific polymerization of lactide (LA) were investigated through studies of aluminum complexes supported by enantiopure and racemic bipyrrolidine-based salan ligands, Lig1AlOBn and Lig2AlOBn. Spectroscopic analysis of stoichiometric initiation reactions and the definition of the stereochemistry of the selective formation of the "match" single-insertion products by X-ray crystallography led to key conclusions about the observed stereocontrol. Notably, it was determined to rely heavily on the preference for the trio of stereocenters around the metal to have a "match" formation (RR-ligand + S-polymer), which works synergistically with the enantiomorphic site preference of the catalyst to ring-open next to a stereocenter of a monomer of the same chirality as that of the ligand, resulting in highly heterotactic or syndiotactic PLA from rac- or meso-LA, respectively.


Assuntos
Alumínio , Polimerização , Alumínio/química , Ligantes , Estereoisomerismo , Cristalografia por Raios X
9.
J Am Chem Soc ; 144(37): 17165-17172, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36070477

RESUMO

Herein, we report the reactions of an Fe(II) imido complex [Ph2B(tBuIm)2Fe═NDipp]- (1) with internal alkynes and isobutyronitrile, affording the Fe amido allenyl complexes [Ph2B(tBuIm)2Fe(NHDipp)((R1)C═C═C(R2)(H))]- (R1 = Et or nPr; R2 = Me or Et, 2-5) and the Fe amido keteniminate complex [Ph2B(tBuIm)2Fe(NHDipp)(N═C═CMe2)K(THF)]n (8-K), respectively. These transformations represent the previously unknown ene-like reactivity of a metal-ligand multiple bond. Stoichiometric reactions of 2 and 8-K with DippNH2 lead to the regeneration of 3-hexyne and isobutyronitrile, respectively, with concomitant formation of the bis(anilido) complex [Ph2B(tBuIm)2Fe(NHDipp)2]- (9). These results provide the platform for 1 as an efficient catalyst for the selective α-deuteration of nitriles and alkynes by RND2. These results demonstrate a new reaction mode for metal imido complexes and suggest new avenues for using the imido ligand in catalysis.


Assuntos
Alcinos , Complexos de Coordenação , Catálise , Complexos de Coordenação/química , Compostos Ferrosos/química , Ligantes , Modelos Moleculares , Nitrilas
10.
J Am Chem Soc ; 144(42): 19576-19591, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36251959

RESUMO

We report high-spin aminyl triradicals with near-planar triphenylene backbones. Near-planarity of the fused aminyl radicals and the 2,6,10-triphenylene ferromagnetic coupling unit (FCU), magnetically equivalent to three fused 3,4'-biphenyl FCUs, assures an effective 2pπ-2pπ overlap within the cross-conjugated π-system, leading to an S = 3/2 (quartet) ground state that is well separated from low-spin excited doublet states. Thermal populations of the low-spin (S = 1/2) excited states are detectable both by SQUID magnetometry and electron paramagnetic resonance (EPR) spectroscopy, providing doublet-quartet energy gaps, ΔEDQ, corresponding to >85% population of the quartet ground states at room temperature. Notably, EPR-based determination of ΔEDQ relies on direct detection of the quartet ground state and doublet excited states. The ΔEDQ values are 1.0-1.1 kcal mol-1, with the more sterically shielded triradical having the larger value. The half-life of the more sterically shielded triradical in 2-methyltetrahydrofuran (2-MeTHF) is about 6 h at room temperature. The less sterically shielded triradical in 2-MeTHF decomposes at 158 K with a half-life of about 4 h, while at 195 K, the half-life is still about 2 h. The dominant products of the decay of triradicals are the corresponding triamines, suggesting hydrogen atom abstraction from the solvent as the primary mechanism. This study expands the frontier of the open-shell PAHs/nanographenes, of which the unique electronic, nonlinear optical, and magnetic properties could be useful in the development of novel organic electronics, photonics, and spintronics.


Assuntos
Hidrogênio , Magnetismo , Espectroscopia de Ressonância de Spin Eletrônica , Solventes
11.
J Am Chem Soc ; 144(13): 6059-6070, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35333507

RESUMO

Triplet ground-state organic molecules are of interest with respect to several emerging technologies but usually show limited stability, especially as thin films. We report an organic diradical, consisting of two Blatter radicals, that possesses a triplet ground state with a singlet-triplet energy gap, ΔEST ≈ 0.4-0.5 kcal mol-1 (2J/k ≈ 220-275 K). The diradical possesses robust thermal stability, with an onset of decomposition above 264 °C (TGA). In toluene/chloroform, glassy matrix, and fluid solution, an equilibrium between two conformations with ΔEST ≈ 0.4 kcal mol-1 and ΔEST ≈ -0.7 kcal mol-1 is observed, favoring the triplet ground state over the singlet ground-state conformation in the 110-330 K temperature range. The diradical with the triplet ground-state conformation is found exclusively in crystals and in a polystyrene matrix. The crystalline neutral diradical is a good electrical conductor with conductivity comparable to the thoroughly optimized bis(thiazolyl)-related monoradicals. This is surprising because the triplet ground state implies that the underlying π-system is cross-conjugated and thus is not compatible with either good conductance or electron delocalization. The diradical is evaporated under ultra-high vacuum to form thin films, which are stable in air for at least 18 h, as demonstrated by X-ray photoelectron and electron paramagnetic resonance (EPR) spectroscopies.


Assuntos
Elétrons , Condutividade Elétrica , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Moleculares , Conformação Molecular
12.
Chemistry ; 28(60): e202201584, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35754003

RESUMO

The recognition of boron compounds is well developed as boronic acids but untapped as organotrifluoroborate anions (R-BF3 - ). We are exploring the development of these and other designer anions as anion-recognition motifs by considering them as substituted versions of the parent inorganic ion. To this end, we demonstrate strong and reliable binding of organic trifluoroborates, R-BF3 - , by cyanostar macrocycles that are size-complementary to the inorganic BF4 - progenitors. We find that recognition is modulated by the substituent's sterics and that the affinities are retained using the common K+ salts of R-BF3 - anions.


Assuntos
Compostos de Boro , Sais , Sais/química , Ânions/química , Ácidos Borônicos
13.
Inorg Chem ; 61(49): 19800-19805, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36441910

RESUMO

The nitride ligand in the iron(IV) complex PhB(iPr2Im)3Fe≡N reacts with boron hydrides to afford PhB(iPr2Im)3FeN(B)H (B = 9-BBN (1), Bpin (2)) and with (Bpin)2 to afford PhB(iPr2Im)3FeN(Bpin)2 (3). The iron(II) borylamido products have all been structurally and spectroscopically characterized, demonstrating facile insertion into B-H and B-B bonds by PhB(iPr2Im)3Fe≡N. Density functional theory (DFT) calculations reveal that the quintet state (S = 2) is significantly lower in energy than the singlet (S = 0) and triplet (S = 1) states for all products. Stoichiometric reaction with (Bpin)2 does not produce the mono-borylated iron imido species PhB(iPr2Im)3FeN(Bpin). DFT calculations suggest that this is because PhB(iPr2Im)3FeN(Bpin) is unstable toward disproportionation to the starting iron(IV) nitride and PhB(iPr2Im)3FeN(Bpin)2. Attempts at B-C bond insertion using phenyl- and benzyl-pinacol borane were unsuccessful, which we attribute to unfavorable kinetics.


Assuntos
Boranos , Ferro , Ferro/química , Ligantes , Cinética
14.
Inorg Chem ; 61(51): 20986-20993, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36516978

RESUMO

Two-coordinate silylamido complexes of nickel and copper rapidly react with CO2 to selectively form a new cyanate ligand along with hexamethyldisiloxane byproducts. Mechanistic insight into these reactions was obtained from the synthesis of proposed intermediates, several silyl- and phenyl- substituted amido analogues, and their subsequent reactivity with CO2. These studies suggest that a unique intramolecular double silyl transfer step facilitates CO2 deoxygenation, which likely contributes to the rapid rates of reaction. The deoxygenation reactions create a platform for a synthetic cycle in which copper amido complexes convert CO2 to organic silylcarbamates.

15.
Phys Chem Chem Phys ; 24(22): 14016-14021, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638717

RESUMO

X-ray photoemission spectroscopy (XPS) has been used to examine the interaction between Au and HfS3 at the Au/HfS3 interface. XPS measurements reveal dissociative chemisorption of O2, leading to the formation of an oxide of Hf at the surface of HfS3. This surface hafnium oxide, along with the weakly chemisorbed molecular species, such as O2 and H2O, are likely responsible for the observed p-type characteristics of HfS3 reported elsewhere. HfS3 devices exhibit n-type behaviour if measured in vacuum but turn p-type in air. Au thickness-dependent XPS measurements provide clear evidence of band bending as the S 2p and Hf 4f core-level peak binding energies for Au/HfS3 are found to be shifted to higher binding energies. This band bending implies formation of a Schottky-barrier at the Au/HfS3 interface, which explains the low measured charge carrier mobilities of HfS3-based devices. The transistor measurements presented herein also indicate the existence of a Schottky barrier, consistent with the XPS core-level binding energy shifts, and show that the bulk of HfS3 is n-type.

16.
J Am Chem Soc ; 143(14): 5324-5329, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33793235

RESUMO

Reduction of the three-coordinate iron(III) imido [Ph2B(tBuIm)2Fe═NDipp] (1) affords [Ph2B(tBuIm)2Fe═NDipp][K(18-C-6)THF2] (2), a rare example of a high-spin (S = 2) iron(II) imido complex. Unusually for a late metal imido complex, the imido ligand in 2 has nucleophilic character, as demonstrated by the reaction with DippNH2, which establishes an equilibrium with the bis(anilido) complex [Ph2B(tBuIm)2Fe(NHDipp)2][K(18-C-6)THF2] (3). In an unusual transformation, formal insertion of iPrN═C═NiPr into the Fe═N(imido) bond yields the guanidinate [Ph2B(tBuIm)2Fe(iPrN)2CNDipp][K(18-C-6)THF2] (4). Reaction of 4 with excess DippNH2 provides 3, along with the guanidine (iPrNH)2C═NDipp. As suggested by these stoichiometric reactions, 2 is an efficient catalyst for the guanylation of carbodiimides, converting a wide range of aniline substrates under mild conditions.

17.
J Am Chem Soc ; 143(14): 5508-5518, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33787241

RESUMO

High-spin (S = 3/2) organic triradicals may offer enhanced properties with respect to several emerging technologies, but those synthesized to date typically exhibit small doublet quartet energy gaps and/or possess limited thermal stability and processability. We report a quartet ground state triradical 3, synthesized by a Pd(0)-catalyzed radical-radical cross-coupling reaction, which possesses two doublet-quartet energy gaps, ΔEDQ ≈ 0.2-0.3 kcal mol-1 and ΔEDQ2 ≈ 1.2-1.8 kcal mol-1. The triradical has a 70+% population of the quartet ground state at room temperature and good thermal stability with onset of decomposition at >160 °C under an inert atmosphere. Magnetic properties of 3 are characterized by SQUID magnetometry in polystyrene glass and by quantitative EPR spectroscopy. Triradical 3 is evaporated under ultrahigh vacuum to form thin films of intact triradicals on silicon substrate, as confirmed by high-resolution X-ray photoelectron spectroscopy. AFM and SEM images of the ∼1 nm thick films indicate that the triradical molecules form islands on the substrate. The films are stable under ultrahigh vacuum for at least 17 h but show onset of decomposition after 4 h at ambient conditions. The drop-cast films are less prone to degradation in air and have a longer lifetime.

18.
Chemistry ; 27(45): 11676-11681, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34008888

RESUMO

The reaction chemistry of the bis-tetrazinyl pyridine ligand (btzp) towards nitrogen oxyanions coordinated to zinc is studied in order to explore the reduction of the NOx - substrates with a redox-active ligand in the absence of redox activity at the metal. Following syntheses and characterization of (btzp)ZnX2 for X=Cl, NO3 and NO2 , featuring O-Zn linkage of both nitrogen oxyanions, it is shown that a silylating agent selectively delivers silyl substituents to tetrazine nitrogens, without reductive deoxygenation of NOx -1 . A new synthesis of the highly hydrogenated H4 btzp, containing two dihydrotetrazine reductants is described as is the synthesis and characterization of (H4 btzp)ZnX2 for X=Cl and NO3 , both of which show considerable hydrogen bonding potential of the dihydrotetrazine ring NH groups. The (H4 btzp)ZnCl2 complex does not bind zinc in the pincer pocket, but instead H4 btzp becomes a bridge between neighboring atoms through tetrazine nitrogen atoms, forming a polymeric chain. The reaction of AgNO2 with (H4 btzp)ZnCl2 is shown to proceed with fast nitrite deoxygenation, yielding water and free NO. Half of the H4 btzp reducing equivalents form Ag0 and thus the chloride ligand remains coordinated to the zinc metal center to yield (btzp)ZnCl2 . To compare with AgNO2 , experiments of (H4 btzp)ZnCl2 with NaNO2 result in salt metathesis between chloride and nitrite, highlighting the importance of a redox-active cation in the reduction of nitrite to NO.

19.
J Org Chem ; 86(19): 13636-13643, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546727

RESUMO

Synthesis of bis-spiro-oxetane and bis-spiro-tetrahydrofuran pyrroline nitroxide radicals relies on the Mitsunobu reaction-mediated double cyclizations of N-Boc protected pyrroline tetraols. Structures of the nitroxide radicals are supported by X-ray crystallography. In a trehalose/sucrose matrix at room temperature, the bis-spiro-oxetane nitroxide radical possesses electron spin coherence time, Tm ≈ 0.7 µs. The observed enhanced Tm is most likely associated with strong hydrogen bonding of oxetane moieties to the trehalose/sucrose matrix.


Assuntos
Elétrons , Furanos , Espectroscopia de Ressonância de Spin Eletrônica , Éteres Cíclicos , Óxidos de Nitrogênio , Pirróis
20.
Inorg Chem ; 60(22): 17241-17248, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34705459

RESUMO

There has been an increasing interest in chemistry involving nitrogen oxyanions, largely due to the environmental hazards associated with increased concentrations of these anions leading to eutrophication and aquatic "dead zones". Herein, we report the synthesis and characterization of a suite of MNOx complexes (M = Co, Zn: x = 2, 3). Reductive deoxygenation of cobalt bis(nitrite) complexes with bis(boryl)pyrazine is faster for cobalt than previously reported nickel, and pendant O-bound nitrito ligand is still readily deoxygenated, despite potential implication of an isonitrosyl primary product. Deoxygenation of zinc oxyanion complexes is also facile, despite zinc being unable to stabilize a nitrosyl ligand, with liberation of nitric oxide and nitrous oxide, indicating N-N bond formation. X-ray photoelectron spectroscopy is effective for discriminating the types of nitrogen in these molecules. ESI mass spectrometry of a suite of M(NOx)y (x = 2, 3 and y = 1, 2) shows that the primary form of ionization is loss of an oxyanion ligand, which can be alleviated via the addition of tetrabutylammonium (TBA) as a nonintuitive cation pair for the neutral oxyanion complexes. We have shown these complexes to be subject to deoxygenation, and there is evidence for nitrogen oxyanion reduction in several cases in the ESI plume. The attractive force between cation and neutral is explored experimentally and computationally and attributed to hydrogen bonding of the nitrogen oxyanion ligands with ammonium α-CH2 protons. One example of ESI-induced reductive dimerization is mimicked by bulk solution synthesis, and that product is characterized by X-ray diffraction to contain two Co(NO)2+ groups linked by a highly conjugated diazapolyene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA