Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 48(17): e100, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32797168

RESUMO

Tracking DNA double strand break (DSB) repair is paramount for the understanding and therapeutic development of various diseases including cancers. Herein, we describe a multiplexed bioluminescent repair reporter (BLRR) for non-invasive monitoring of DSB repair pathways in living cells and animals. The BLRR approach employs secreted Gaussia and Vargula luciferases to simultaneously detect homology-directed repair (HDR) and non-homologous end joining (NHEJ), respectively. BLRR data are consistent with next-generation sequencing results for reporting HDR (R2 = 0.9722) and NHEJ (R2 = 0.919) events. Moreover, BLRR analysis allows longitudinal tracking of HDR and NHEJ activities in cells, and enables detection of DSB repairs in xenografted tumours in vivo. Using the BLRR system, we observed a significant difference in the efficiency of CRISPR/Cas9-mediated editing with guide RNAs only 1-10 bp apart. Moreover, BLRR analysis detected altered dynamics for DSB repair induced by small-molecule modulators. Finally, we discovered HDR-suppressing functions of anticancer cardiac glycosides in human glioblastomas and glioma cancer stem-like cells via inhibition of DNA repair protein RAD51 homolog 1 (RAD51). The BLRR method provides a highly sensitive platform to simultaneously and longitudinally track HDR and NHEJ dynamics that is sufficiently versatile for elucidating the physiology and therapeutic development of DSB repair.


Assuntos
Genes Reporter , Luciferases/genética , Reparo de DNA por Recombinação , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Copépodes/enzimologia , Reparo do DNA por Junção de Extremidades , Feminino , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Luciferases/metabolismo , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase Multiplex/métodos , Imagem Óptica/métodos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Análise de Sequência de DNA/métodos
2.
J Neurooncol ; 139(2): 293-305, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29767307

RESUMO

The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/terapia , Dependovirus/genética , Terapia Genética , Interferon beta/genética , Células Estromais/metabolismo , Animais , Astrócitos/citologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Regiões Promotoras Genéticas , Células Estromais/citologia
3.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512388

RESUMO

Neuroinflammation after stroke is characterized by the activation of resident microglia and the invasion of circulating leukocytes into the brain. Although lymphocytes infiltrate the brain in small number, they have been consistently demonstrated to be the most potent leukocyte subpopulation contributing to secondary inflammatory brain injury. However, the exact mechanism of how this minimal number of lymphocytes can profoundly affect stroke outcome is still largely elusive. Here, using a mouse model for ischemic stroke, we demonstrated that early activation of microglia in response to stroke is differentially regulated by distinct T cell subpopulations - with TH1 cells inducing a type I INF signaling in microglia and regulatory T cells (TREG) cells promoting microglial genes associated with chemotaxis. Acute treatment with engineered T cells overexpressing IL-10 administered into the cisterna magna after stroke induces a switch of microglial gene expression to a profile associated with pro-regenerative functions. Whereas microglia polarization by T cell subsets did not affect the acute development of the infarct volume, these findings substantiate the role of T cells in stroke by polarizing the microglial phenotype. Targeting T cell-microglia interactions can have direct translational relevance for further development of immune-targeted therapies for stroke and other neuroinflammatory conditions.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Microglia/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Transdução de Sinais/fisiologia
4.
J Vis Exp ; (171)2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34028443

RESUMO

Stroke is a leading cause of death and acquired adult disability in developed countries. Despite extensive investigation for novel therapeutic strategies, there remain limited therapeutic options for stroke patients. Therefore, more research is needed for pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity, and regeneration. Given the inability of in vitro models to reproduce the complexity of the brain, experimental stroke models are essential for the analysis and subsequent evaluation of novel drug targets for these mechanisms. In addition, detailed standardized models for all procedures are urgently needed to overcome the so-called replication crisis. As an effort within the ImmunoStroke research consortium, a standardized photothrombotic mouse model using an intraperitoneal injection of Rose Bengal and the illumination of the intact skull with a 561 nm laser is described. This model allows the performance of stroke in mice with allocation to any cortical region of the brain without invasive surgery; thus, enabling the study of stroke in various areas of the brain. In this video, the surgical methods of stroke induction in the photothrombotic model along with histological analysis are demonstrated.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Encéfalo , Modelos Animais de Doenças , Humanos , Camundongos , Rosa Bengala , Acidente Vascular Cerebral/etiologia
5.
Cell Death Discov ; 5: 72, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854231

RESUMO

Glioblastoma is an incurable and highly aggressive brain tumor. Understanding therapeutic resistance and survival mechanisms driving this tumor type is key to finding effective therapies. Smac mimetics (SM) emerged as attractive cancer therapeutics particularly for tumor populations that are highly resistant to conventional apoptosis-inducing therapies. We evaluated the therapeutic efficacy of SM on Glioma stem-like cells (GSCs) and showed that this family of compounds stimulates an adaptive response triggered by TNFα. Increased expression of TNFα results in a prolonged and sustained activation of NF-κB and STAT3 signaling thus activating several tumor cell resistance mechanisms in GSCs. We show that STAT3 activation is contingent on EZH2 activation and uncover a synergistic lethality between SM and EZH2 inhibitors. Therapeutic inhibition of EZH2 impaired the viability of SM-treated GSCs. Our study outlines the molecular underpinnings of SM resistance in glioblastoma and provides mechanistic insight to overcome this resistance and increase therapeutic efficacy.

7.
Stem Cell Reports ; 12(4): 712-727, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30930246

RESUMO

Inherent plasticity and various survival cues allow glioblastoma stem-like cells (GSCs) to survive and proliferate under intrinsic and extrinsic stress conditions. Here, we report that GSCs depend on the adaptive activation of ER stress and subsequent activation of lipogenesis and particularly stearoyl CoA desaturase (SCD1), which promotes ER homeostasis, cytoprotection, and tumor initiation. Pharmacological targeting of SCD1 is particularly toxic due to the accumulation of saturated fatty acids, which exacerbates ER stress, triggers apoptosis, impairs RAD51-mediated DNA repair, and achieves a remarkable therapeutic outcome with 25%-100% cure rate in xenograft mouse models. Mechanistically, divergent cell fates under varying levels of ER stress are primarily controlled by the ER sensor IRE1, which either promotes SCD1 transcriptional activation or converts to apoptotic signaling when SCD1 activity is impaired. Taken together, the dependence of GSCs on fatty acid desaturation presents an exploitable vulnerability to target glioblastoma.


Assuntos
Retículo Endoplasmático/metabolismo , Glioblastoma/etiologia , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Estresse do Retículo Endoplasmático , Glioblastoma/patologia , Homeostase , Humanos , Metabolismo dos Lipídeos , Camundongos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Estearoil-CoA Dessaturase/genética , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA