Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 27(Pt 5): 1278-1288, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876603

RESUMO

An accurate knowledge of the parameters governing the kinetics of block copolymer self-assembly is crucial to model the time- and temperature-dependent evolution of pattern formation during annealing as well as to predict the most efficient conditions for the formation of defect-free patterns. Here, the self-assembly kinetics of a lamellar PS-b-PMMA block copolymer under both isothermal and non-isothermal annealing conditions are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS) experiments with a novel modelling methodology that accounts for the annealing history of the block copolymer film before it reaches the isothermal regime. Such a model allows conventional studies in isothermal annealing conditions to be extended to the more realistic case of non-isothermal annealing and prediction of the accuracy in the determination of the relevant parameters, namely the correlation length and the growth exponent, which define the kinetics of the self-assembly.

2.
Polymers (Basel) ; 12(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096908

RESUMO

Directed self-assembly of block copolymers is a bottom-up approach to nanofabrication that has attracted high interest in recent years due to its inherent simplicity, high throughput, low cost and potential for sub-10 nm resolution. In this paper, we review the main principles of directed self-assembly of block copolymers and give a brief overview of some of the most extended applications. We present a novel fabrication route based on the introduction of directed self-assembly of block copolymers as a patterning option for the fabrication of nanoelectromechanical systems. As a proof of concept, we demonstrate the fabrication of suspended silicon membranes clamped by dense arrays of single-crystal silicon nanowires of sub-10 nm diameter. Resulting devices can be further developed for building up high-sensitive mass sensors based on nanomechanical resonators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA