Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Glia ; 70(9): 1605-1629, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35474470

RESUMO

Synaptic elements from neuromuscular junctions (NMJs) undergo massive morphological and functional changes upon nerve injury. While morphological changes of NMJ-associated glia in response to injury has been investigated, their functional properties remain elusive. Perisynaptic Schwann cells (PSCs), glial cells at the NMJ, are essential for NMJ maintenance and repair, and are involved in synaptic efficacy and plasticity. Importantly, these functions are regulated by PSCs ability to detect synaptic transmission through, notably, muscarinic (mAChRs) and purinergic receptors' activation. Using Ca2+ imaging and electrophysiological recordings of synaptic transmission at the mouse NMJ, we investigated PSC receptors activation following denervation and during reinnervation in adults and at denervated NMJs in an ALS mouse model (SOD1G37R ). We observed reduced PSCs mAChR-mediated Ca2+ responses at denervated and reinnervating NMJs. Importantly, PSC phenotypes during denervation and reinnervation were distinct than the one observed during NMJ maturation. At denervated NMJs, exogenous activation of mAChRs greatly diminished galectin-3 expression, a glial marker of phagocytosis. PSCs Ca2+ responses at reinnervating NMJs did not correlate with the number of innervating axons or process extensions. Interestingly, we observed an extended period of reduced PSC mAChRs activation after the injury (up to 60 days), suggesting a glial memory of injury. PSCs associated with denervated NMJs in an ALS model (SOD1G37R mice) did not show any muscarinic adaptation, a phenotype incompatible with NMJ repair. Understanding functional mechanisms that underlie this glial response to injury may contribute to favor complete NMJ and motor recovery.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , Animais , Colinérgicos/metabolismo , Camundongos , Neuroglia/fisiologia , Junção Neuromuscular/metabolismo , Células de Schwann/metabolismo , Superóxido Dismutase-1/metabolismo
2.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066354

RESUMO

All nervous system pathologies (e.g., neurodegenerative/demyelinating diseases and brain tumours) develop neuroinflammation, a beneficial process during pathological events, aimed at removing damaged cells, toxic agents, and/or pathogens. Unfortunately, excessive inflammation frequently occurs during nervous system disorders, becoming a detrimental event capable of enhancing neurons and myelinating glial cell impairment, rather than improving their survival and activity. Consequently, targeting the neuroinflammation could be relevant for reducing brain injury and rescuing neuronal and glial cell functions. Several studies have highlighted the role of acetylcholine and its receptors in the regulation of central and peripheral inflammation. In particular, α7 nicotinic receptor has been described as one of the main regulators of the "brain cholinergic anti-inflammatory pathway". Its expression in astrocytes and microglial cells and the ability to modulate anti-inflammatory cytokines make this receptor a new interesting therapeutic target for neuroinflammation regulation. In this review, we summarize the distribution and physiological functions of the α7 nicotinic receptor in glial cells (astrocytes and microglia) and its role in the modulation of neuroinflammation. Moreover, we explore how its altered expression and function contribute to the development of different neurological pathologies and exacerbate neuroinflammatory processes.


Assuntos
Encéfalo/patologia , Colinérgicos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/química
3.
Molecules ; 26(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946750

RESUMO

Due to the microenvironment created by Schwann cell (SC) activity, peripheral nerve fibers are able to regenerate. Inflammation is the first response to nerve damage and the removal of cellular and myelin debris is essential in preventing the persistence of the local inflammation that may negatively affect nerve regeneration. Acetylcholine (ACh) is one of the neurotransmitters involved in the modulation of inflammation through the activity of its receptors, belonging to both the muscarinic and nicotinic classes. In this report, we evaluated the expression of α7 nicotinic acetylcholine receptors (nAChRs) in rat sciatic nerve, particularly in SCs, after peripheral nerve injury. α7 nAChRs are absent in sciatic nerve immediately after dissection, but their expression is significantly enhanced in SCs after 24 h in cultured sciatic nerve segments or in the presence of the proinflammatory neuropeptide Bradykinin (BK). Moreover, we found that activation of α7 nAChRs with the selective partial agonist ICH3 causes a decreased expression of c-Jun and an upregulation of uPA, MMP2 and MMP9 activity. In addition, ICH3 treatment inhibits IL-6 transcript level expression as well as the cytokine release. These results suggest that ACh, probably released from regenerating axons or by SC themselves, may actively promote through α7 nAChRs activation an anti-inflammatory microenvironment that contributes to better improving the peripheral nerve regeneration.


Assuntos
Regeneração Nervosa , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolina/metabolismo , Animais , Células Cultivadas , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Wistar , Células de Schwann/metabolismo
4.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933046

RESUMO

Functional characterization of muscarinic cholinergic receptors in myelinating glial cells has been well described both in central and peripheral nervous system. Rat Schwann cells (SCs) express different muscarinic receptor subtypes with the prevalence of the M2 subtype. The selective stimulation of this receptor subtype inhibits SC proliferation, improving their differentiation towards myelinating phenotype. In this work, we describe for the first time that human SCs are cholinoceptive as they express several muscarinic receptor subtypes and, as for rat SCs, M2 receptor is one of the most abundant. Human SCs, isolated from adult nerves, were cultured in vitro and stimulated with M2 muscarinic agonist arecaidine propargyl ester (APE). Similarly to that observed in rat, M2 receptor activation causes a decreased cell proliferation and promotes SC differentiation as suggested by increased Egr2 expression with an improved spindle-like shape cell morphology. Conversely, the non-selective stimulation of muscarinic receptors appears to promote cell proliferation with a reduction of SC average cell diameter. The data obtained demonstrate that human SCs are cholinoceptive and that human cultured SCs may represent an interesting tool to understand their physiology and increase the knowledge on how the cholinergic stimulation may contribute to address human SC development in normal and pathological conditions.


Assuntos
Receptores Muscarínicos/metabolismo , Células de Schwann/metabolismo , Adulto , Alcinos/farmacologia , Arecolina/análogos & derivados , Arecolina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Éteres/farmacologia , Feminino , Humanos , Pessoa de Meia-Idade , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Células de Schwann/efeitos dos fármacos
5.
J Cell Physiol ; 233(7): 5348-5360, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29227527

RESUMO

Mesenchymal stem cells (MSCs), also known as stromal mesenchymal stem cells, are multipotent cells, which can be found in many tissues and organs as bone marrow, adipose tissue and other tissues. In particular MSCs derived from Adipose tissue (ADSCs) are the most frequently used in regenerative medicine because they are easy to source, rapidly expandable in culture and excellent differentiation potential into adipocytes, chondrocytes, and other cell types. Acetylcholine (ACh), the most important neurotransmitter in Central nervous system (CNS) and peripheral nervous system (PNS), plays important roles also in non-neural tissue, but its functions in MSCs are still not investigated. Although MSCs express muscarinic receptor subtypes, their role is completely unknown. In the present work muscarinic cholinergic effects were characterized in rat ADSCs. Analysis by RT-PCR demonstrates that ADSCs express M1-M4 muscarinic receptor subtypes, whereas M2 is one of the most expressed subtype. For this reason, our attention was focused on M2 subtype. By using the selective M2 against Arecaidine Propargyl Ester (APE) we performed cell proliferation and migration assays demonstrating that APE causes cell growth and migration inhibition without affecting cell survival. Our results indicate that ACh via M2 receptors, may contribute to the maintaining of the ADSCs quiescent status. These data are the first evidence that ACh, via muscarinic receptors, might contribute to control ADSCs physiology.


Assuntos
Acetilcolina/metabolismo , Tecido Adiposo/citologia , Células-Tronco Mesenquimais/citologia , Receptor Muscarínico M2/genética , Acetilcolina/antagonistas & inibidores , Tecido Adiposo/metabolismo , Animais , Arecolina/análogos & derivados , Arecolina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Ratos , Receptor Muscarínico M1/genética , Receptor Muscarínico M2/agonistas , Ativação Transcricional/efeitos dos fármacos
6.
Int J Mol Sci ; 19(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857516

RESUMO

Glioblastoma (GBM) is the most aggressive human brain tumor. The high growth potential and decreased susceptibility to apoptosis of the glioma cells is mainly dependent on genetic amplifications or mutations of oncogenic or pro-apoptotic genes, respectively. We have previously shown that the activation of the M2 acetylcholine muscarinic receptors inhibited cell proliferation and induced apoptosis in two GBM cell lines and cancer stem cells. The aim of this study was to delve into the molecular mechanisms underlying the M2-mediated cell proliferation arrest. Exploiting U87MG and U251MG cell lines as model systems, we evaluated the ability of M2 receptors to interfere with Notch-1 and EGFR pathways, whose activation promotes GBM proliferation. We demonstrated that the activation of M2 receptors, by agonist treatment, counteracted Notch and EGFR signaling, through different regulatory cascades depending, at least in part, on p53 status. Only in U87MG cells, which mimic p53-wild type GBMs, did M2 activation trigger a molecular circuitry involving p53, Notch-1, and the tumor suppressor mir-34a-5p. This regulatory module negatively controls Notch-1, which affects cell proliferation mainly through the Notch-1/EGFR axis. Our data highlighted, for the first time, a molecular circuitry that is deregulated in the p53 wild type GBM, based on the cross-talk between M2 receptor and the Notch-1/EGFR pathways, mediated by mir-34a-5p.


Assuntos
Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , Receptor Muscarínico M2/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Ligação Proteica , Interferência de RNA , Receptor Muscarínico M2/agonistas , Transdução de Sinais/efeitos dos fármacos
7.
Biomedicines ; 11(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36672549

RESUMO

The cross talk between neurons and glial cells during development, adulthood, and disease, has been extensively documented. Among the molecules mediating these interactions, neurotransmitters play a relevant role both in myelinating and non-myelinating glial cells, thus resulting as additional candidates regulating the development and physiology of the glial cells. In this review, we summarise the contribution of the main neurotransmitter receptors in the regulation of the morphogenetic events of glial cells, with particular attention paid to the role of acetylcholine receptors in Schwann cell physiology. In particular, the M2 muscarinic receptor influences Schwann cell phenotype and the α7 nicotinic receptor is emerging as influential in the modulation of peripheral nerve regeneration and inflammation. This new evidence significantly improves our knowledge of Schwann cell development and function and may contribute to identifying interesting new targets to support the activity of these cells in pathological conditions.

8.
Life (Basel) ; 12(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35207498

RESUMO

BACKGROUND: Schwann cells (SCs) express cholinergic receptors, suggesting a role of cholinergic signaling in the control of SC proliferation, differentiation and/or myelination. Our previous studies largely demonstrated that the pharmacological activation of the M2 muscarinic receptor subtype caused an inhibition of cell proliferation and promoted the expression of pro-myelinating differentiation genes. In order to elucidate the molecular signaling activated downstream the M2 receptor activation, in the present study we investigated the signal transduction pathways activated by the M2 orthosteric agonist arecaidine propargyl ester (APE) in SCs. METHODS: Using Western blot we analyzed some components of the noncanonical pathways involving ß1-arrestin and PI3K/AKT/mTORC1 signaling. A wound healing assay was used to evaluate SC migration. RESULTS: Our results demonstrated that M2 receptor activation negatively modulated the PI3K/Akt/mTORC1 axis, possibly through ß1-arrestin downregulation. The involvement of the mTORC1 complex was also supported by the decreased expression of its specific target p-p70 S6KThr389. Then, we also analyzed the expression of p-AMPKαthr172, a negative regulator of myelination that resulted in reduced levels after M2 agonist treatment. The analysis of cell migration and morphology allowed us to demonstrate that M2 receptor activation caused an arrest of SC migration and modified cell morphology probably by the modulation of ß1-arrestin/cofilin-1 and PKCα expression, respectively. CONCLUSIONS: The data obtained demonstrated that M2 receptor activation in addition to the canonical Gi protein-coupled pathway modulates noncanonical pathways involving the mTORC1 complex and other kinases whose activation may contribute to the inhibition of SC proliferation and migration and address SC differentiation.

9.
Biomolecules ; 12(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35204740

RESUMO

The cross-talk between axon and glial cells during development and in adulthood is mediated by several molecules. Among them are neurotransmitters and their receptors, which are involved in the control of myelinating and non-myelinating glial cell development and physiology. Our previous studies largely demonstrate the functional expression of cholinergic muscarinic receptors in Schwann cells. In particular, the M2 muscarinic receptor subtype, the most abundant cholinergic receptor expressed in Schwann cells, inhibits cell proliferation downregulating proteins expressed in the immature phenotype and triggers promyelinating differentiation genes. In this study, we analysed the in vitro modulation of the Neuregulin-1 (NRG1)/erbB pathway, mediated by the M2 receptor activation, through the selective agonist arecaidine propargyl ester (APE). M2 agonist treatment significantly downregulates NRG1 and erbB receptors expression, both at transcriptional and protein level, and causes the internalization and intracellular accumulation of the erbB2 receptor. Additionally, starting from our previous results concerning the negative modulation of Notch-active fragment NICD by M2 receptor activation, in this work, we clearly demonstrate that the M2 receptor subtype inhibits erbB2 receptors by Notch-1/NICD downregulation. Our data, together with our previous results, demonstrate the existence of a cross-interaction between the M2 receptor and NRG1/erbB pathway-Notch1 mediated, and that it is responsible for the modulation of Schwann cell proliferation/differentiation.


Assuntos
Neurregulinas , Receptor ErbB-2 , Receptor Muscarínico M2/metabolismo , Receptores Notch , Células de Schwann , Transdução de Sinais , Proliferação de Células , Células Cultivadas , Neurregulinas/metabolismo , Receptor ErbB-2/metabolismo , Receptores Notch/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo
10.
Eur J Histochem ; 64(s2)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33334089

RESUMO

Adipose-derived stem cells (ASCs) are an attractive source for regenerative medicine as they can be easily isolated, rapidly expandable in culture and show excellent in vitro differentiation potential. Acetylcholine (ACh), one of the main neurotransmitters in central and peripheral nervous systems, plays key roles in the control of several physiological processes also in non-neural tissues. As demonstrated in our previous studies, ACh can contribute to the rat ASCs physiology, negatively modulating ASCs proliferation and migration via M2 muscarinic receptor (mAChR) activation. In the present work we show that rat ASCs also express α7 nicotinic receptors (nAChRs). In particular, we have investigated the effects mediated by the selective activation of α7 nAChRs, which causes a reduction of ASC proliferation without affecting cell survival and morphology, and significantly promotes cell migration via upregulation of the CXCR4 expression. Interestingly, the activation of the α7 nAChR also upregulates the expression of M2 mAChR protein, indicating a cooperation between muscarinic and nicotinic receptors in the inhibition of ASC proliferation.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Mesenquimais/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Tecido Adiposo/citologia , Animais , Bungarotoxinas/farmacologia , Fumaratos/farmacologia , Masculino , Ratos Sprague-Dawley , Compostos de Espiro/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
11.
Cell Death Discov ; 5: 92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069117

RESUMO

Schwann cells (SCs) play a central role in peripheral nervous system physiology and in the response to axon injury. The ability of SCs to proliferate, secrete growth factors, modulate immune response, migrate and re-myelinate regenerating axons has been largely documented. However, there are several restrictions hindering their clinical application, such as the difficulty in collection and a slow in vitro expansion. Adipose-derived stem cells (ASCs) present good properties for peripheral nerve regenerative medicine. When exposed to specific growth factors in vitro, they can acquire a SC-like phenotype (dASCs) expressing key SCs markers and assuming spindle-shaped morphology. Nevertheless, the differentiated phenotype is unstable and several strategies, including pharmacological stimulation, are being studied to improve differentiation outcomes. Cholinergic receptors are potential pharmacological targets expressed in glial cells. Our previous work demonstrated that muscarinic cholinergic receptors, in particular M2 subtype, are present in SCs and are able to modulate several physiological processes. In the present work, muscarinic receptors expression was characterised and the effects mediated by M2 muscarinic receptor were evaluated in rat dASCs. M2 receptor activation, by the preferred agonist arecaidine propargyl ester (APE), caused a reversible arrest of dASCs cell growth, supported by the downregulation of proteins involved in the maintenance of cell proliferation and upregulation of proteins involved in the differentiation (i.e., c-Jun and Egr-2), without affecting cell survival. Moreover, M2 receptor activation in dASCs enhances a pronounced spindle-shaped morphology, supported by Egr2 upregulation, and inhibits cell migration. Our data clearly demonstrate that rat dASCs express functional muscarinic receptors, in particular M2 subtype, which is able to modulate their physiological and morphological processes, as well as SCs differentiation. These novel findings could open new opportunities for the development of combined cell and pharmacological therapies for peripheral nerve regeneration, harnessing the potential of dASCs and M2 receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA