Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0045224, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940570

RESUMO

Intrinsic resistance to macrolides in Gram-negative bacteria is primarily attributed to the low permeability of the outer membrane, though the underlying genetic and molecular mechanisms remain to be fully elucidated. Here, we used transposon directed insertion-site sequencing (TraDIS) to identify chromosomal non-essential genes involved in Escherichia coli intrinsic resistance to a macrolide antibiotic, tilmicosin. We constructed two highly saturated transposon mutant libraries of >290,000 and >390,000 unique Tn5 insertions in a clinical enterotoxigenic strain (ETEC5621) and in a laboratory strain (K-12 MG1655), respectively. TraDIS analysis identified genes required for growth of ETEC5621 and MG1655 under 1/8 MIC (n = 15 and 16, respectively) and 1/4 MIC (n = 38 and 32, respectively) of tilmicosin. For both strains, 23 genes related to lipopolysaccharide biosynthesis, outer membrane assembly, the Tol-Pal system, efflux pump, and peptidoglycan metabolism were enriched in the presence of the antibiotic. Individual deletion of genes (n = 10) in the wild-type strains led to a 64- to 2-fold reduction in MICs of tilmicosin, erythromycin, and azithromycin, validating the results of the TraDIS analysis. Notably, deletion of surA or waaG, which impairs the outer membrane, led to the most significant decreases in MICs of all three macrolides in ETEC5621. Our findings contribute to a genome-wide understanding of intrinsic macrolide resistance in E. coli, shedding new light on the potential role of the peptidoglycan layer. They also provide an in vitro proof of concept that E. coli can be sensitized to macrolides by targeting proteins maintaining the outer membrane such as SurA and WaaG.

2.
J Antimicrob Chemother ; 78(8): 1909-1920, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37294541

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus pseudintermedius (MRSP) lineages harbouring staphylococcal cassette chromosome (SCC) mec types IV, V and ΨSCCmec57395 usually display low oxacillin MICs (0.5-2 mg/L). OBJECTIVES: To evaluate how oxacillin MICs correlate with PBP mutations and susceptibility to ß-lactams approved for veterinary use. METHODS: Associations between MICs and PBP mutations were investigated by broth microdilution, time-kill and genome sequence analyses in 117 canine MRSP strains harbouring these SCCmec types. Clinical outcome was retrospectively evaluated in 11 MRSP-infected dogs treated with ß-lactams. RESULTS: Low-level MRSP was defined by an oxacillin MIC <4 mg/L. Regardless of strain genotype, all low-level MRSP isolates (n = 89) were cefalexin susceptible, whereas no strains were amoxicillin/clavulanate susceptible according to clinical breakpoints. Exposure to 2× MIC of cefalexin resulted in complete killing within 8 h. High (≥4 mg/L) oxacillin MICs were associated with substitutions in native PBP2, PBP3, PBP4 and acquired PBP2a, one of which (V390M in PBP3) was statistically significant by multivariable modelling. Eight of 11 dogs responded to systemic therapy with first-generation cephalosporins (n = 4) or amoxicillin/clavulanate (n = 4) alone or with concurrent topical treatment, including 6 of 7 dogs infected with low-level MRSP. CONCLUSIONS: Oxacillin MIC variability in MRSP is influenced by mutations in multiple PBPs and correlates with cefalexin susceptibility. The expert rule recommending that strains with oxacillin MIC ≥0.5 mg/L are reported as resistant to all ß-lactams should be reassessed based on these results, which are highly clinically relevant in light of the shortage of effective antimicrobials for systemic treatment of MRSP infections in veterinary medicine.


Assuntos
Doenças do Cão , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Cães , Animais , Cefalexina , Resistência a Meticilina , Estudos Retrospectivos , Doenças do Cão/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Oxacilina/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
3.
Appl Environ Microbiol ; 89(10): e0055923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787538

RESUMO

Neomycin is the first-choice antibiotic for the treatment of porcine enteritis caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the rise after the increased use of neomycin due to the ban on zinc oxide. We identified the neomycin resistance determinants and plasmid contents in a historical collection of 128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were characterized by whole-genome sequencing and antimicrobial susceptibility testing, followed by conjugation experiments and long-read sequencing of eight selected representative strains. We detected 35 sequence types (STs) with ST100 being the most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance genes, namely aph(3')-Ia and aph(3')-Ib, which were identified in 93% and 7% of the isolates, respectively. The aph(3')-Ia was found on different large conjugative plasmids belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI carried genes encoding resistance to other antimicrobials or heavy metals, highlighting the risk of co-selection. The aph(3')-Ib gene occurred on a 19 kb chimeric, mobilizable plasmid that contained elements tracing back its origin to distantly related genera. While aph(3')-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was observed between aph(3')-Ib and mobile genetic elements. In conclusion, the spread of neomycin resistance in porcine clinical E. coli is driven by two resistance determinants located on distinct plasmid scaffolds circulating within a highly diverse population dominated by ST100. IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia coli enteritis in pigs. This work shows that aph(3')-Ia and to a lesser extent aph(3')-Ib are responsible for the spread of neomycin resistance that has been recently observed among pig clinical isolates and elucidates the mechanisms of dissemination of these two resistance determinants. The aph(3')-Ia gene is located on different conjugative plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and Tn4352) that contributed to its spread. The diffusion of aph(3')-Ib is mediated by a small non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related members of the Pseudomonadota phylum and was not associated with any detectable mobile genetic element. Although the spread of neomycin resistance is largely attributable to horizontal transfer, both resistance determinants have been acquired by a predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for approximately one-third of the strains.


Assuntos
Enterite , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Suínos , Neomicina/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Fazendas , Antibacterianos/farmacologia , Plasmídeos/genética , Escherichia coli Enterotoxigênica/genética , Patrimônio Genético , Dinamarca , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
4.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32358001

RESUMO

Livestock-associated methicillin-resistant Staphylococcus aureus sequence type (ST) 398 (LA-MRSA ST398) is a genetic lineage for which pigs are regarded as the main reservoir. An increasing prevalence of LA-MRSA ST398 has been reported in areas with high livestock density throughout Europe. In this study, we investigated the drivers contributing to the introduction and spread of LA-MRSA ST398 through the pig farming system in southern Italy. Whole-genome sequencing (WGS) of LA-MRSA ST398 isolates collected in 2018 from pigs (n = 53) and employees (n = 14) from 10 farms in the Calabria region of Italy were comparatively analyzed with previously published WGS data from Italian ST398 isolates (n = 45), an international ST398 reference collection (n = 89), and isolates from Danish pig farms (n = 283), which are the main suppliers of pigs imported to Italy. Single-nucleotide polymorphisms (SNP) were used to infer isolate relatedness, and these data were used together with data from animal trading to identify factors contributing to LA-MRSA ST398 dissemination. The analyses support the existence of two concurrent pathways for the spread of LA-MRSA ST398 in southern Italy: (i) multiple introductions of LA-MRSA ST398 through the import of colonized pigs from other European countries, including Denmark and France, and (ii) the spread of distinct clones dependent on local trading of pigs between farms. Phylogenetically related Italian and Danish LA-MRSA ST398 isolates shared extensive similarities, including carriage of antimicrobial resistance genes. Our findings highlight the potential risk of transboundary transmission of antimicrobial-resistant bacterial clones with a high zoonotic potential during import of pigs from countries with high LA-MRSA prevalence.IMPORTANCE Over the past decade, livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 (LA-MRSA ST398) has spread among pig holdings throughout Europe, in parallel with the increased incidence of infections among humans, especially in intensive pig farming regions. Despite the growing prevalence of LA-MRSA ST398 in Italian pig farms, the transmission dynamics of this clone in Italy remains unclear. This work provides genome-based evidence to suggest transboundary LA-MRSA ST398 transmission through trading of colonized pigs between European countries and Italy, as well as between farms in the same Italian region. Our findings show that both international trading and local trading of colonized pigs are important factors contributing to the global spread of LA-MRSA ST398 and underscore the need for control measures on and off the farm to reduce the dissemination of this zoonotic pathogen.


Assuntos
Comércio , Infecções Estafilocócicas/veterinária , Doenças dos Suínos/transmissão , Criação de Animais Domésticos/economia , Animais , Itália , Staphylococcus aureus Resistente à Meticilina/fisiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/transmissão , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia
5.
BMC Microbiol ; 19(1): 51, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808302

RESUMO

BACKGROUND: Colonization by livestock-associated MRSA (LA-MRSA) has increasingly been reported in the swine population worldwide. The aim of this study was to assess the prevalence of MRSA nasal carriage in healthy pigs, including the black (Calabrese) breed, from farms in the Calabria Region (Southern Italy). Between January and March 2018, a total of 475 healthy pigs reared in 32 farms were sampled by nasal swabbing. MRSA isolates were characterized by spa, MLST and SCCmec typing, and susceptibility testing to 17 antimicrobials. RESULTS: 22 of 32 (66.8%) pig farms resulted positive for MRSA. The prevalence of MRSA was 46.1% (219 MRSA culture-positive out of 475 samples). MRSA colonization was significantly higher in intensive farms and in pigs with a recent or ongoing antimicrobial treatment. All 219 MRSA isolates were assigned to ST398. The most common spa types were t011 (37.0%), t034 (22.4%) and t899 (15.1%). A novel spa type (t18290) was detected in one isolate. An insertion of IS256 in the ST398-specific A07 fragment of the SAPIG2195 gene was detected in 10 out of 81 t011 isolates. Nearly all isolates carried the SCCmec type V element, except 11 isolates that carried the SCCmec type IVc. None of the isolates was positive for the Panton-Valentine leukocidin. All isolates were resistant to tetracycline. High resistance rates were also found for clindamycin (93.1%), trimethoprim/sulfamethoxazole (68.4%), fluoroquinolones (47.9-65.3%) and erythromycin (46.1%). None of the isolates was resistant to vancomycin and fusidic acid. Overall, a multidrug resistant phenotype was observed in 88.6% of isolates. CONCLUSIONS: We report a high prevalence of MRSA among healthy swine in Southern Italy farms, with higher isolation frequency associated with intensive farming. The epidemiological types identified in our study reflect those reported in other European countries. Our findings underscore the importance of monitoring the evolution of LA-MRSA in pig farms in order to implement control measures and reduce the risk of spread in the animal population.


Assuntos
Antibacterianos/farmacologia , Portador Sadio/veterinária , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/veterinária , Doenças dos Suínos/epidemiologia , Animais , Técnicas de Tipagem Bacteriana , Portador Sadio/enzimologia , Portador Sadio/microbiologia , Estudos Transversais , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Fazendas , Itália/epidemiologia , Gado/microbiologia , Meticilina/farmacologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Nariz/microbiologia , Prevalência , Infecções Estafilocócicas/epidemiologia , Suínos , Doenças dos Suínos/microbiologia , Tetraciclina/farmacologia
6.
Antibiotics (Basel) ; 12(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37627689

RESUMO

This study aimed to investigate the role played by pets as reservoirs of Escherichia coli strains causing human urinary tract infections (UTIs) in household contacts. Among 119 patients with community-acquired E. coli UTIs, we recruited 19 patients who lived with a dog or a cat. Fecal swabs from the household pet(s) were screened by antimicrobial selective culture to detect E. coli displaying the resistance profile of the human strain causing UTI. Two dogs shed E. coli isolates indistinguishable from the UTI strain by pulsed-field gel electrophoresis. Ten months later, new feces from these dogs and their owners were screened selectively and quantitatively for the presence of the UTI strain, followed by core-genome phylogenetic analysis of all isolates. In one pair, the resistance phenotype of the UTI strain occurred more frequently in human (108 CFU/g) than in canine feces (104 CFU/g), and human fecal isolates were more similar (2-7 SNPs) to the UTI strain than canine isolates (83-86 SNPs). In the other pair, isolates genetically related to the UTI strain (23-40 SNPs) were only detected in canine feces (105 CFU/g). These results show that dogs can be long-term carriers of E. coli strains causing UTIs in human household contacts.

7.
J Anim Sci Biotechnol ; 14(1): 158, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38143275

RESUMO

BACKGROUND: Diarrhea is a major cause of reduced growth and mortality in piglets during the suckling and weaning periods and poses a major threat to the global pig industry. Diarrhea and gut dysbiosis may in part be prevented via improved early postnatal microbial colonization of the gut. To secure better postnatal gut colonization, we hypothesized that transplantation of colonic or gastric content from healthy donors to newborn recipients would prevent diarrhea in the recipients in the post-weaning period. Our objective was to examine the impact of transplanting colonic or gastric content on health and growth parameters and paraclinical parameters in recipient single-housed piglets exposed to a weaning transition and challenged with enterotoxigenic Escherichia coli (ETEC). METHODS: Seventy-two 1-day-old piglets were randomized to four groups: colonic microbiota transplantation (CMT, n = 18), colonic content filtrate transplantation (CcFT, n = 18), gastric microbiota transplantation (GMT, n = 18), or saline (CON, n = 18). Inoculations were given on d 2 and 3 of life, and all piglets were milk-fed until weaning (d 20) and shortly after challenged with ETEC (d 24). We assessed growth, diarrhea prevalence, ETEC concentration, organ weight, blood parameters, small intestinal morphology and histology, gut mucosal function, and microbiota composition and diversity. RESULTS: Episodes of diarrhea were seen in all groups during both the milk- and the solid-feeding phase, possibly due to stress associated with single housing. However, CcFT showed lower diarrhea prevalence on d 27, 28, and 29 compared to CON (all P < 0.05). CcFT also showed a lower ETEC prevalence on d 27 (P < 0.05). CMT showed a higher alpha diversity and a difference in beta diversity compared to CON (P < 0.05). Growth and other paraclinical endpoints were similar across groups. CONCLUSION: In conclusion, only CcFT reduced ETEC-related post-weaning diarrhea. However, the protective effect was marginal, suggesting that higher doses, more effective modalities of administration, longer treatment periods, and better donor quality should be explored by future research to optimize the protective effects of transplantation.

8.
Anim Microbiome ; 5(1): 5, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647171

RESUMO

BACKGROUND: Understanding the complex structures and interactions of the bacterial communities inhabiting the upper (URT) and lower (LRT) respiratory tract of pigs is at an early stage. The objective of this study was to characterize the bacterial topography of three URT (nostrils, choana, and tonsils) and LRT (proximal trachea, left caudal lobe and secondary bronchi) sites in pigs. Thirty-six post-mortem samples from six pigs were analysed by 16S rRNA gene quantification and sequencing, and the microbiota in nostrils and trachea was additionally profiled by shotgun sequencing. RESULTS: The bacterial composition obtained by the two methods was congruent, although metagenomics recovered only a fraction of the diversity (32 metagenome-assembled genomes) due to the high proportion (85-98%) of host DNA. The highest abundance of 16S rRNA copies was observed in nostrils, followed by tonsils, trachea, bronchi, choana and lung. Bacterial richness and diversity were lower in the LRT compared to the URT. Overall, Firmicutes and Proteobacteria were identified as predominant taxa in all sample types. Glasserella (15.7%), Streptococcus (14.6%) and Clostridium (10.1%) were the most abundant genera but differences in microbiota composition were observed between the two tracts as well as between sampling sites within the same tract. Clear-cut differences were observed between nasal and tonsillar microbiomes (R-values 0.85-0.93), whereas bacterial communities inhabiting trachea and lung were similar (R-values 0.10-0.17). Moraxella and Streptococcus were more common in bronchial mucosal scraping than in lavage, probably because of mucosal adherence. The bacterial microbiota of the choana was less diverse than that of the nostrils and similar to the tracheal microbiota (R-value 0.24), suggesting that the posterior nasal cavity serves as the primary source of bacteria for the LRT. CONCLUSION: We provide new knowledge on microbiota composition and species abundance in distinct ecological niches of the pig respiratory tract. Our results shed light on the distribution of opportunistic bacterial pathogens across the respiratory tract and support the hypothesis that bacteria present in the lungs originate from the posterior nasal cavity. Due to the high abundance of host DNA, high-resolution profiling of the pig respiratory microbiota by shotgun sequencing requires methods for host DNA depletion.

9.
Prev Vet Med ; 212: 105852, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689897

RESUMO

Neomycin is a first-choice antibiotic for treatment of porcine enteritis caused by enterotoxigenic Escherichia coli (ETEC), but little is known about factors influencing resistance to this drug. The aims of this study were to assess antimicrobial resistance and virulence in 325 E. coli isolates obtained in 2020 from various infections in pigs, and to identify factors associated with neomycin resistance development. Susceptibility to 16 antimicrobial agents was determined by broth microdilution, and occurrence of ETEC-associated virulence factors was screened by PCR and hemolysis on blood agar. Univariate and multivariate logistic regression analyses were performed to determine if age group, virulence factors, or antibiotic use (neomycin and other antibiotics) were associated with neomycin resistance. STa, STb, LT, F4, and F18 were detected in 14%, 37%, 26%, 21% and 23% of the isolates, respectively. Resistance was low for antimicrobials of high public health importance (1.5% for cefotaxime, 1% for colistin and no fluoroquinolone resistance) but high for drugs used for treatment of ETEC enteritis (e.g. 20% for neomycin). Isolates with the ETEC pathotype were significantly associated with the weaner age group and intestinal/fecal origin. Multivariate analysis showed that recent neomycin use and presence of F4 or F18 were significantly associated with neomycin resistance amongst isolates from weaners. These results prove an association between neomycin resistance and use at the farm level. Further research is warranted to determine why neomycin resistance was associated with F4 and F18, and whether neomycin use may co-select for virulent strains.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Suínos , Animais , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Neomicina/farmacologia , Neomicina/uso terapêutico , Diarreia/veterinária , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fatores de Virulência/uso terapêutico , Dinamarca , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/epidemiologia
10.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745650

RESUMO

New Gram-negative-selective antimicrobials are desirable to avoid perturbations in the gut microbiota leading to antibiotic-induced dysbiosis. We investigated the impact of a prototype drug (MAC13243) interfering with the Gram-negative outer membrane protein LolA on the faecal microbiota. Faecal suspensions from two healthy human donors were exposed to MAC13243 (16, 32, or 64 mg/L) using an in vitro gut model (CoMiniGut). Samples collected 0, 4, and 8 h after exposure were subjected to viable cell counts, 16S rRNA gene quantification and V3-V4 sequencing using the Illumina MiSeq platform. MAC13243 exhibited concentration-dependent killing of coliforms in both donors after 8 h. Concentrations of ≤32 mg/L reduced the growth of aerobic bacteria without influencing the microbiota composition and diversity. An expansion of Firmicutes at the expense of Bacteroidetes and Actinobacteria was observed in the faecal microbiota from one donor following exposure to 64 mg/L of MAC13242. At all concentrations tested, MAC13243 did not lead to the proliferation of Escherichia coli nor a reduced abundance of beneficial bacteria, which are typical changes observed in antibiotic-induced dysbiosis. These results support our hypothesis that a drug interfering with a specific target in Gram-negative bacteria has a low impact on the commensal gut microbiota and, therefore, a low risk of inducing dysbiosis.

11.
mSphere ; 7(5): e0040222, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154672

RESUMO

Escherichia coli is intrinsically resistant to macrolides due to outer membrane impermeability, but may also acquire macrolide resistance genes by horizontal transfer. We evaluated the prevalence and types of acquired macrolide resistance determinants in pig clinical E. coli, and we assessed the ability of peptidomimetics to potentiate different macrolide subclasses against strains resistant to neomycin, a first-line antibiotic in the treatment of pig-enteric infections. The erythromycin MIC distribution was determined in 324 pig clinical E. coli isolates, and 62 neomycin-resistant isolates were further characterized by genome sequencing and MIC testing of azithromycin, spiramycin, tilmicosin, and tylosin. The impact on potency achieved by combining these macrolides with three selected peptidomimetic compounds was determined by checkerboard assays in six strains representing different genetic lineages and macrolide resistance gene profiles. Erythromycin MICs ranged from 16 to >1,024 µg/mL. Azithromycin showed the highest potency in wild-type strains (1 to 8 µg/mL), followed by erythromycin (16 to 128 µg/mL), tilmicosin (32 to 256 µg/mL), and spiramycin (128 to 256 µg/mL). Isolates with elevated MIC mainly carried erm(B), either alone or in combination with other acquired macrolide resistance genes, including erm(42), mef(C), mph(A), mph(B), and mph(G). All peptidomimetic-macrolide combinations exhibited synergy (fractional inhibitory concentration index [FICI] < 0.5) with a 4- to 32-fold decrease in the MICs of macrolides. Interestingly, the MICs of tilmicosin in wild-type strains were reduced to concentrations (4 to 16 µg/mL) that can be achieved in the pig intestinal tract after oral administration, indicating that peptidomimetics can potentially be employed for repurposing tilmicosin in the management of E. coli enteritis in pigs. IMPORTANCE Acquired macrolide resistance is poorly studied in Escherichia coli because of intrinsic resistance and limited antimicrobial activity in Gram-negative bacteria. This study reveals new information on the prevalence and distribution of macrolide resistance determinants in a comprehensive collection of porcine clinical E. coli from Denmark. Our results contribute to understanding the correlation between genotypic and phenotypic macrolide resistance in E. coli. From a clinical standpoint, our study provides an initial proof of concept that peptidomimetics can resensitize E. coli to macrolide concentrations that may be achieved in the pig intestinal tract after oral administration. The latter result has implications for animal health and potential applications in veterinary antimicrobial drug development in view of the high rates of antimicrobial-resistant E. coli isolated from enteric infections in pigs and the lack of viable alternatives for treating these infections.


Assuntos
Infecções por Escherichia coli , Peptidomiméticos , Espiramicina , Suínos , Animais , Escherichia coli/genética , Antibacterianos/farmacologia , Azitromicina/farmacologia , Peptidomiméticos/farmacologia , Macrolídeos/farmacologia , Tilosina/farmacologia , Farmacorresistência Bacteriana/genética , Eritromicina/farmacologia , Infecções por Escherichia coli/veterinária , Neomicina
12.
ACS Infect Dis ; 8(1): 78-85, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34965085

RESUMO

The decreasing efficacy of existing antibiotics against pulmonary pathogens that affect cystic fibrosis (CF) patients calls for the development of novel antimicrobials. Iron uptake and metabolism are vital processes for bacteria, hence potential therapeutic targets. Gallium [Ga(III)] is a ferric iron-mimetic that inhibits bacterial growth by disrupting iron uptake and metabolism. In this work we evaluate the efficacy of three Ga(III) compounds, namely, Ga(NO3)3, (GaN), Ga(III)-maltolate (GaM), and Ga(III)-protoporphyrin IX (GaPPIX), against a collection of CF pathogens using both reference media and media mimicking biological fluids. All CF pathogens, except Streptococcus pneumoniae, were susceptible to at least one Ga(III) compound. Notably, Mycobacterium abscessus and Stenotrophomonas maltophilia were susceptible to all Ga(III) compounds. Achromobacter xylosoxidans, Burkholderia cepacia complex, and Pseudomonas aeruginosa were more susceptible to GaN and GaM, whereas Staphylococcus aureus and Haemophilus influenzae were more sensitive to GaPPIX. The results of this study support the development of Ga(III)-based therapy as a broad-spectrum strategy to treat CF lung infections.


Assuntos
Fibrose Cística , Gálio , Stenotrophomonas maltophilia , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
13.
Front Microbiol ; 13: 846167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308345

RESUMO

Staphylococcus aureus is the most common pathogen causing osteomyelitis (OM). The aim of this study was to explore the clonal complex (CC) distribution and the pattern of virulence determinants of S. aureus isolates from OM in Italy. Whole-genome sequencing was performed on 83 S. aureus isolates from OM cases in six hospitals. Antibiotic susceptibility tests showed that 30.1% of the isolates were methicillin-resistant S. aureus (MRSA). The most frequent CCs detected were CC22, CC5, CC8, CC30, and CC15, which represent the most common lineages circulating in Italian hospitals. MRSA were limited in the number of lineages (CC22, CC5, CC8, and CC1). Phylogenetic analysis followed the sequence type-CC groupings and revealed a non-uniform distribution of the isolates from the different hospitals. No significant difference in the mean number of virulence genes carried by MRSA or MSSA isolates was observed. Some virulence genes, namely cna, fib, fnbA, coa, lukD, lukE, sak, and tst, were correlated with the CC. However, different categories of virulence factors, such as adhesins, exoenzymes, and toxins, were frequently detected and unevenly distributed among all lineages. Indeed, each lineage carried a variable combination of virulence genes, likely reflecting functional redundancy, and arguing for the importance of those traits for the pathogenicity in OM. In conclusion, no specific genetic trait in the most frequent lineages could explain their high prevalence among OM isolates. Our findings highlight that CCs detected in OM isolates follow the epidemiology of S. aureus infections in the country. It is conceivable that any of the most common S. aureus CC can cause a variety of infections, including OM.

14.
Anim Microbiome ; 3(1): 9, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33499988

RESUMO

Understanding the structure of the respiratory microbiome and its complex interactions with opportunistic pathogenic bacteria has become a topic of great scientific and economic interest in livestock production, given the severe consequences of respiratory disease on animal health and welfare. The present review focuses on the microbial structures of the porcine upper and lower airways, and the factors that influence microbiome development and onset of respiratory disease. Following a literature search on PubMed and Scopus, 21 articles were selected based on defined exclusion criteria (20 studies performed by 16S rRNA gene sequencing and one by shotgun metagenomics). Analysis of the selected literature indicated that the microbial structure of the upper respiratory tract undergoes a remarkable evolution after birth and tends to stabilise around weaning. Antimicrobial treatment, gaseous ammonia concentration, diet and floor type are amongst the recognized environmental factors influencing microbiome structure. The predominant phyla of the upper respiratory tract are Proteobacteria and Firmicutes with significant differences at the genus level between the nasal and the oropharyngeal cavity. Only five studies investigated the lower respiratory tract and their results diverged in relation to the relative abundance of these two phyla and even more in the composition of the lung microbiome at the genus level, likely because of methodological differences. Reduced diversity and imbalanced microbial composition are associated with an increased risk of respiratory disease. However, most studies presented methodological pitfalls concerning specimen collection, sequencing target and depth, and lack of quality control. Standardization of sampling and sequencing procedures would contribute to a better understanding of the structure of the microbiota inhabiting the lower respiratory tract and its relationship with pig health and disease.

15.
Microorganisms ; 9(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205374

RESUMO

Bacteria belonging to the genus Aminobacter are metabolically versatile organisms thriving in both natural and anthropized terrestrial environments. To date, the taxonomy of this genus is poorly defined due to the unavailability of the genomic sequence of A. anthyllidis LMG 26462T and the presence of unclassified Aminobacter strains. Here, we determined the genome sequence of A. anthyllidis LMG 26462T and performed phylogenomic, average nucleotide identity and digital DNA-DNA hybridization analyses of 17 members of genus Aminobacter. Our results indicate that 16S rRNA-based phylogeny does not provide sufficient species-level discrimination, since most of the unclassified Aminobacter strains belong to valid Aminobacter species or are putative new species. Since some members of the genus Aminobacter can utilize certain C1 compounds, such as methylamines and methyl halides, a comparative genomic analysis was performed to characterize the genetic basis of some degradative/assimilative pathways in the whole genus. Our findings suggest that all Aminobacter species are heterotrophic methylotrophs able to generate the methylene tetrahydrofolate intermediate through multiple oxidative pathways of C1 compounds and convey it in the serine cycle. Moreover, all Aminobacter species carry genes implicated in the degradation of phosphonates via the C-P lyase pathway, whereas only A. anthyllidis LMG 26462T contains a symbiosis island implicated in nodulation and nitrogen fixation.

16.
J Glob Antimicrob Resist ; 26: 29-36, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33965630

RESUMO

OBJECTIVES: Staphylococcus aureus is the most common causative organism of osteomyelitis (OM). Nevertheless, the molecular epidemiology of S. aureus causing OM remains ill-defined. This study aimed to address the global epidemiology of S. aureus clones from OM patients. METHODS: Literature databases were searched for studies reporting the molecular typing of S. aureus involved in OM published between 1 January 2000 and 29 July 2020. Data from 32 articles that fulfilled the inclusion criteria were analysed for year of publication, country of patients, methicillin susceptibility and genotypic characteristics of S. aureus isolates. RESULTS: Pandemic clones CC5, CC8, CC22, CC30 and CC45 were the most common in OM. The distribution of clones differed greatly among studies owing to the local epidemiology of S. aureus and the MSSA heterogeneity. PVL-positive MRSA clones belonging to ST80/CC80 and ST8/CC8/USA300 were the most common among paediatric patients in Europe and the USA; greater variability was observed in the adult population. In Europe, MRSA belonged to PVL-negative CC5, CC8 and CC22 indicating a nosocomial origin of infections; in Asia PVL-positive ST59/CC59 MRSA was the most frequent. PVL-positive clones were often detected in haematogenous OM in children and adults. Although MSSA were polyclonal, PVL-negative ST398/CC398 MSSA was the most prevalent clone in diabetic foot OM. CONCLUSION: All major S. aureus clones circulating both in hospital and community settings appear to be capable of causing OM. Future studies reporting molecular typing and genomic data will provide more insights into the epidemiology and pathobiology of S. aureus clones causing OM.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Adulto , Antibacterianos , Criança , Células Clonais , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Osteomielite/epidemiologia , Staphylococcus aureus/genética
17.
Syst Appl Microbiol ; 44(3): 126199, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33848814

RESUMO

The monotypic carboxydophilic genus Carbophilus has recently been transferred to the genus Aminobacter within the family Phyllobacteriaceae, and Carbophilus carboxidus was renamed Aminobacter carboxidus (comb. nov.) [Hördt et al. 2020]. Due to the poor resolution of the 16S rRNA gene-based phylogeny, an extensive phylogenomic analysis of the family Phyllobacteriaceae was conducted, with particular focus on the genus Aminobacter. Whole genome-based analyses of Phyllobacteriaceae type strains provided evidenced that the genus Aminobacter forms a monophyletic cluster, clearly demarcated from all other members of the family. Close relatedness between A. carboxidus DSM 1086T and A. lissarensis DSM 17454T was inferred from core proteome phylogeny, shared gene content, and multilocus sequence analyses. ANI and GGDC provided genetic similarity values above the species demarcating threshold for these two type strains. Metabolic profiling and cell morphology analysis corroborated the phenotypic identity between A. carboxidus DSM 1086T and A. lissarensis DSM 17454T. Search for the presence of carbon monoxide dehydrogenase (CODH) genes in Phyllobacteriaceae genomes revealed that the form II CODH is widespread in the family, whereas form I CODH was detected in few Mesorhizobium type strains, and in both A. carboxidus DSM 1086T and A. lissarensis DSM 17454T. Results of phylogenomic, chemotaxonomic, and morphological investigations, combined with the presence of similarly arranged CODH genes, indicate that A. carboxidus DSM 1086T and A. lissarensis DSM 17454T are distinct strains of the same species. Hence A. carboxidus is a later subjective heterotypic synonym of A. lissarensis.


Assuntos
Monóxido de Carbono , Phyllobacteriaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Rhizobiaceae , Análise de Sequência de DNA
18.
ACS Sens ; 6(9): 3273-3283, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34476940

RESUMO

The pyochelin (PCH) siderophore produced by the pathogenic bacterium Pseudomonas aeruginosa is an important virulence factor, acting as a growth promoter during infection. While strong evidence exists for PCH production in vivo, PCH quantification in biological samples is problematic due to analytical complexity, requiring extraction from large volumes and time-consuming purification steps. Here, the construction of a bioluminescent whole cell-based biosensor, which allows rapid, sensitive, and single-step PCH quantification in biological samples, is reported. The biosensor was engineered by fusing the promoter of the PCH biosynthetic gene pchE to the luxCDABE operon, and the resulting construct was inserted into the chromosome of the ΔpvdAΔpchDΔfpvA siderophore-null P. aeruginosa mutant. A bioassay was setup in a 96-well microplate format, enabling the contemporary screening of several samples in a few hours. A linear response was observed for up to 40 nM PCH, with a lower detection limit of 1.64 ± 0.26 nM PCH. Different parameters were considered to calibrate the biosensor, and a detailed step-by-step operation protocol, including troubleshooting specific problems that can arise during sample preparation, was established to achieve rapid, sensitive, and specific PCH quantification in both P. aeruginosa culture supernatants and biological samples. The biosensor was implemented as a screening tool to detect PCH-producing P. aeruginosa strains on a solid medium.


Assuntos
Técnicas Biossensoriais , Sideróforos , Fenóis , Pseudomonas aeruginosa/genética , Tiazóis
19.
Prev Vet Med ; 194: 105448, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34333413

RESUMO

Hepatitis E virus (HEV) infection is an emerging public health problem in industrialized countries. The infection is associated with waterborne epidemics and transmitted via faecal-oral route. Zoonotic cases of HEV in humans have increased in Europe, and HEV genotype 3 (HEV-3) is the most frequent among humans and animals. Nevertheless, HEV surveillance in the Italian pig farming industry is patchy. Here, HEV prevalence in pig farms located in the Calabria region in Southern Italy was investigated. A total of 692 serum samples were collected from 26 farms and tested for anti-HEV IgG antibody detection. The percentage of HEV-seropositive pigs was 56.8 %. Small farm size, farrow-to-finishing production, and infrequent cleaning procedures were associated with higher HEV seroprevalence. In 12 of the HEV-seropositive farms, 67 faecal samples were collected and 10 of these (10.6 %) tested positive for HEV RNA. Seven of 10 viral RNA sequences were genotyped for phylogenetic analysis, five of which belonged to subtype HEV-3f and two to subtype HEV-3e. The high HEV seroprevalence and the circulation of HEV-3 strains among domestic pigs in the Calabria region pose a risk for the zoonotic transmission of HEV from pigs to occupational exposed workers.


Assuntos
Vírus da Hepatite E , Hepatite E , Doenças dos Suínos , Animais , Fazendas , Hepatite E/epidemiologia , Hepatite E/veterinária , Vírus da Hepatite E/genética , Itália/epidemiologia , Filogenia , RNA Viral , Estudos Soroepidemiológicos , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia
20.
Microbiol Res ; 241: 126584, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32882535

RESUMO

Caves are extreme environments inhabited by microbial communities adapted to thrive oligotrophic conditions. Cave microbes are organised in complex ecological networks and have developed survival strategies involving the production and release of a large variety of secondary metabolites, including antibiotic-like compounds. In this study, the structure and the metabolic features of a biofilm-like microbial community lining the walls of a pristine karst cavity (the Yumugi river cave) located in a remote region of the Western New Guinea were investigated. 16S rRNA and shotgun sequence analyses highlighted the prevalence of chemoorganotrophic phyla (Proteobacteria, Actinobacteria, Firmicutes and Acidobacteria), consistent with metabolic predictions inferred from the cave metagenome analysis. Few clinically relevant antimicrobial resistance genes were detected. A culture-based approach allowed the isolation of some heterotrophic members of the bacterial community, and antimicrobial susceptibility testing revealed an overall high level of resistance to different antimicrobials classes. Isolates presumptively representing new uncharacterized members of genus Pseudomonas displayed interesting antibiotic properties against Gram-positive indicator strains. Our work supports the hypothesis that caves represent a reservoir for new bacterial species and drug discovery research.


Assuntos
Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cavernas/microbiologia , Microbiota/genética , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Metagenoma/genética , Testes de Sensibilidade Microbiana , Nova Guiné , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA