Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769407

RESUMO

Cultivated cardoon (Cynara cardunculus var. altilis L.) is a promising candidate species for the development of plant cell cultures suitable for large-scale biomass production and recovery of nutraceuticals. We set up a protocol for Agrobacterium tumefaciens-mediated transformation, which can be used for the improvement of cardoon cell cultures in a frame of biorefinery. As high lignin content determines lower saccharification yields for the biomass, we opted for a biotechnological approach, with the purpose of reducing lignin content; we generated transgenic lines overexpressing the Arabidopsis thaliana MYB4 transcription factor, a known repressor of lignin/flavonoid biosynthesis. Here, we report a comprehensive characterization, including metabolic and transcriptomic analyses of AtMYB4 overexpression cardoon lines, in comparison to wild type, underlining favorable traits for their use in biorefinery. Among these, the improved accessibility of the lignocellulosic biomass to degrading enzymes due to depletion of lignin content, the unexpected increased growth rates, and the valuable nutraceutical profiles, in particular for hydroxycinnamic/caffeoylquinic and fatty acids profiles.


Assuntos
Ácidos Cumáricos/metabolismo , Cynara/genética , Cynara/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Ácido Quínico/análogos & derivados , Arabidopsis/genética , Arabidopsis/metabolismo , Biocombustíveis , Biomassa , Técnicas de Cultura de Células , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Ácido Quínico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcriptoma
2.
BMC Plant Biol ; 17(1): 20, 2017 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109190

RESUMO

BACKGROUND: Fusarium verticillioides is a common maize pathogen causing ear rot (FER) and contamination of the grains with the fumonisin B1 (FB1) mycotoxin. Resistance to FER and FB1 contamination are quantitative traits, affected by environmental conditions, and completely resistant maize genotypes to the pathogen are so far unknown. In order to uncover genomic regions associated to reduced FER and FB1 contamination and identify molecular markers for assisted selection, an F2:3 population of 188 progenies was developed crossing CO441 (resistant) and CO354 (susceptible) genotypes. FER severity and FB1 contamination content were evaluated over 2 years and sowing dates (early and late) in ears artificially inoculated with F. verticillioides by the use of either side-needle or toothpick inoculation techniques. RESULTS: Weather conditions significantly changed in the two phenotyping seasons and FER and FB1 content distribution significantly differed in the F3 progenies according to the year and the sowing time. Significant positive correlations (P < 0.01) were detected between FER and FB1 contamination, ranging from 0.72 to 0.81. A low positive correlation was determined between FB1 contamination and silking time (DTS). A genetic map was generated for the cross, based on 41 microsatellite markers and 342 single nucleotide polymorphisms (SNPs) derived from Genotyping-by-Sequencing (GBS). QTL analyses revealed 15 QTLs for FER, 17 QTLs for FB1 contamination and nine QTLs for DTS. Eight QTLs located on linkage group (LG) 1, 2, 3, 6, 7 and 9 were in common between FER and FB1, making possible the selection of genotypes with both low disease severity and low fumonisin contamination. Moreover, five QTLs on LGs 1, 2, 4, 5 and 9 located close to previously reported QTLs for resistance to other mycotoxigenic fungi. Finally, 24 candidate genes for resistance to F. verticillioides are proposed combining previous transcriptomic data with QTL mapping. CONCLUSIONS: This study identified a set of QTLs and candidate genes that could accelerate breeding for resistance of maize lines showing reduced disease severity and low mycotoxin contamination determined by F. verticillioides.


Assuntos
Fumonisinas/metabolismo , Fusarium/fisiologia , Locos de Características Quantitativas , Zea mays/genética , Zea mays/microbiologia , Genótipo , Repetições de Microssatélites/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Zea mays/metabolismo
3.
BMC Plant Biol ; 13: 166, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24148786

RESUMO

BACKGROUND: Maturity date (MD) is a crucial factor for marketing of fresh fruit, especially those with limited shelf-life such as peach (Prunus persica L. Batsch): selection of several cultivars with differing MD would be advantageous to cover and extend the marketing season. Aims of this work were the fine mapping and identification of candidate genes for the major maturity date locus previously identified on peach linkage group 4. To improve genetic resolution of the target locus two F2 populations derived from the crosses Contender x Ambra (CxA, 306 individuals) and PI91459 (NJ Weeping) x Bounty (WxBy, 103 individuals) were genotyped with the Sequenom and 9K Illumina Peach Chip SNP platforms, respectively. RESULTS: Recombinant individuals from the WxBy F2 population allowed the localisation of maturity date locus to a 220 kb region of the peach genome. Among the 25 annotated genes within this interval, functional classification identified ppa007577m and ppa008301m as the most likely candidates, both encoding transcription factors of the NAC (NAM/ATAF1, 2/CUC2) family. Re-sequencing of the four parents and comparison with the reference genome sequence uncovered a deletion of 232 bp in the upstream region of ppa007577m that is homozygous in NJ Weeping and heterozygous in Ambra, Bounty and the WxBy F1 parent. However, this variation did not segregate in the CxA F2 population being the CxA F1 parent homozygous for the reference allele. The second gene was thus examined as a candidate for maturity date. Re-sequencing of ppa008301m, showed an in-frame insertion of 9 bp in the last exon that co-segregated with the maturity date locus in both CxA and WxBy F2 populations. CONCLUSIONS: Using two different segregating populations, the map position of the maturity date locus was refined from 3.56 Mb to 220 kb. A sequence variant in the NAC gene ppa008301m was shown to co-segregate with the maturity date locus, suggesting this gene as a candidate controlling ripening time in peach. If confirmed on other genetic materials, this variant may be used for marker-assisted breeding of new cultivars with differing maturity date.


Assuntos
Estudos de Associação Genética , Loci Gênicos/genética , Mapeamento Físico do Cromossomo , Prunus/crescimento & desenvolvimento , Prunus/genética , Sequência de Aminoácidos , Cruzamentos Genéticos , Genoma de Planta/genética , Genótipo , Mutação INDEL/genética , Escore Lod , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/química , Polimorfismo Genético , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Recombinação Genética/genética , Alinhamento de Sequência , Fatores de Transcrição/química
4.
Front Plant Sci ; 14: 1155797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332696

RESUMO

Introduction: Tomato (Solanum lycopersicum L.) is a major horticultural crop that is cultivated worldwide and is characteristic of the Mediterranean agricultural system. It represents a key component of the diet of billion people and an important source of vitamins and carotenoids. Tomato cultivation in open field often experiences drought episodes, leading to severe yield losses, since most modern cultivars are sensitive to water deficit. Water stress leads to changes in the expression of stress-responsive genes in different plant tissues, and transcriptomics can support the identification of genes and pathways regulating this response. Methods: Here, we performed a transcriptomic analysis of two tomato genotypes, M82 and Tondo, in response to a PEG-mediated osmotic treatment. The analysis was conducted separately on leaves and roots to characterize the specific response of these two organs. Results: A total of 6,267 differentially expressed transcripts related to stress response was detected. The construction of gene co-expression networks defined the molecular pathways of the common and specific responses of leaf and root. The common response was characterized by ABA-dependent and ABA-independent signaling pathways, and by the interconnection between ABA and JA signaling. The root-specific response concerned genes involved in cell wall metabolism and remodeling, whereas the leaf-specific response was principally related to leaf senescence and ethylene signaling. The transcription factors representing the hubs of these regulatory networks were identified. Some of them have not yet been characterized and can represent novel candidates for tolerance. Discussion: This work shed new light on the regulatory networks occurring in tomato leaf and root under osmotic stress and set the base for an in-depth characterization of novel stress-related genes that may represent potential candidates for improving tolerance to abiotic stress in tomato.

5.
Plants (Basel) ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987037

RESUMO

Acrylamide, a suspected human carcinogen, is generated during food processing at high temperatures in the Maillard reaction, which involves reducing sugars and free asparagine. In wheat derivatives, free asparagine represents a key factor in acrylamide formation. Free asparagine levels in the grain of different wheat genotypes has been investigated in recent studies, but little is known about elite varieties that are cultivated in Italy. Here, we analysed the accumulation of free asparagine in a total of 54 bread wheat cultivars that are relevant for the Italian market. Six field trials in three Italian locations over two years were considered. Wholemeal flours obtained from harvested seeds were analysed using an enzymatic method. Free asparagine content ranged from 0.99 to 2.82 mmol/kg dry matter in the first year, and from 0.55 to 2.84 mmol/kg dry matter in the second year. Considering the 18 genotypes that were present in all the field trials, we evaluated possible environment and genetic influences for this trait. Some cultivars seemed to be highly affected by environment, whereas others showed a relative stability in free asparagine content across years and locations. Finally, we identified two varieties showing the highest free asparagine levels in our analysis, representing potential useful materials for genotype x environment interaction studies. Two other varieties, which were characterized by low amounts of free asparagine in the considered samples, may be useful for the food industry and for future breeding programs aimed to reduce acrylamide-forming potential in bread wheat.

6.
BMC Genomics ; 12: 41, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21241522

RESUMO

BACKGROUND: The changes in storage reserve accumulation during maize (Zea mays L.) grain maturation are well established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of carbon to starch and protein are more elusive. The Opaque-2 (O2) gene, one of the best-characterized plant transcription factors, is a good example of the integration of carbohydrate, amino acid and storage protein metabolisms in maize endosperm development. Evidence also indicates that the Opaque-7 (O7) gene plays a role in affecting endosperm metabolism. The focus of this study was to assess the changes induced by the o2 and o7 mutations on maize endosperm metabolism by evaluating protein and amino acid composition and by transcriptome profiling, in order to investigate the functional interplay between these two genes in single and double mutants. RESULTS: We show that the overall amino acid composition of the mutants analyzed appeared similar. Each mutant had a high Lys and reduced Glx and Leu content with respect to wild type. Gene expression profiling, based on a unigene set composed of 7,250 ESTs, allowed us to identify a series of mutant-related down (17.1%) and up-regulated (3.2%) transcripts. Several differentially expressed ESTs homologous to genes encoding enzymes involved in amino acid synthesis, carbon metabolism (TCA cycle and glycolysis), in storage protein and starch metabolism, in gene transcription and translation processes, in signal transduction, and in protein, fatty acid, and lipid synthesis were identified. Our analyses demonstrate that the mutants investigated are pleiotropic and play a critical role in several endosperm-related metabolic processes. Pleiotropic effects were less evident in the o7 mutant, but severe in the o2 and o2o7 backgrounds, with large changes in gene expression patterns, affecting a broad range of kernel-expressed genes. CONCLUSION: Although, by necessity, this paper is descriptive and more work is required to define gene functions and dissect the complex regulation of gene expression, the genes isolated and characterized to date give us an intriguing insight into the mechanisms underlying endosperm metabolism.


Assuntos
Aminoácidos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endosperma/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Proteínas de Ligação a DNA/genética , Endosperma/genética , Perfilação da Expressão Gênica , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Zea mays/genética
7.
PLoS One ; 13(11): e0206993, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30439980

RESUMO

The α-zein gene family encodes the most abundant storage proteins of maize (Zea mays) endosperm. Members of this family are expressed in a parent-of-origin manner. To characterize this phenomenon further, we investigated the expression of a subset of α-zein polypeptides in reciprocal crosses between o2 lines that were characterized by a simplified α-zein pattern. Maize lines that suppressed the expression of α-zeins when used as female parents were identified. The suppression was cross-specific, occurring only when specific genetic backgrounds were combined. Four α-zein sequences that were sensitive to uniparental expression were isolated. Molecular characterization of these α-zeins confirmed that their expression or suppression depended on the genetic proprieties of the endosperm tissue instead of their parental origin. DNA methylation analysis of both maternally and paternally expressed α-zeins revealed no clear correlation between this epigenetic marker and parent-of-origin allelic expression, suggesting that an additional factor(s) is involved in this process. Genetic analyses revealed that the ability of certain lines to suppress α-zein expression was unstable after one round of heterozygosity with non-suppressing lines. Interestingly, α-zeins also showed a transgressive expression pattern because unexpressed isoforms were reactivated in both F2 and backcross plants. Collectively, our results suggest that parent-of-origin expression of specific α-zein alleles depends on a complex interaction between genotypes in a manner that is reminiscent of paramutation-like phenomena.


Assuntos
Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Zeína/metabolismo , Alelos , Sequência de Aminoácidos , Quimera/genética , Metilação de DNA , DNA de Plantas/química , DNA de Plantas/genética , DNA de Plantas/metabolismo , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Proteínas de Plantas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Zeína/genética
8.
Genetics ; 196(3): 653-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24374354

RESUMO

Pure epigenetic variation, or epigenetic variation that is independent of genetic context, may provide a mechanism for phenotypic variation in the absence of DNA mutations. To estimate the extent of pure epigenetic variation within and across generations and to identify the DNA regions targeted, a group of eight plants derived from a highly inbred line of maize (Zea mays) was analyzed by the methylation-sensitive amplified polymorphism (MSAP) technique. We found that cytosine methylation (mC) differences among individuals accounted for up to 7.4% of CCGG sites investigated by MSAP. Of the differentially methylated fragments (DMFs) identified in the S0 generation, ∼12% were meiotically inherited for at least six generations. We show that meiotically heritable mC variation was consistently generated for an average of 0.5% CCGG sites per generation and that it largely occurred somatically. We provide evidence that mC variation can be established and inherited in a parent-of-origin manner, given that the paternal lineage is more prone to both forward and reverse mC changes. The molecular characterization of selected DMFs revealed that the variation was largely determined by CG methylation changes that map within gene regions. The expression analysis of genes overlapping with DMFs did not reveal an obvious correlation between mC variation and transcription, reinforcing the idea that the primary function of gene-body methylation is not to control gene expression. Because this study focuses on epigenetic variation in field-grown plants, the data presented herein pertain to spontaneous epigenetic changes of the maize genome in a natural context.


Assuntos
Citosina/metabolismo , Metilação de DNA , Epigênese Genética , Variação Genética , Zea mays/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Folhas de Planta/genética , Polimorfismo de Fragmento de Restrição
9.
Nat Genet ; 45(5): 487-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525075

RESUMO

Rosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.


Assuntos
Agricultura , Evolução Biológica , Variação Genética , Genoma de Planta/genética , Prunus/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Dados de Sequência Molecular , Polímeros/metabolismo , Propanóis/metabolismo , Prunus/classificação
10.
Plant Cell ; 19(4): 1145-62, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17468264

RESUMO

Enzymes catalyzing histone acetylation and deacetylation contribute to the modulation of chromatin structure, thus playing an important role in regulating gene and genome activity. We showed that downregulation and overexpression of the maize (Zea mays) Rpd3-type hda101 histone deacetylase gene induced morphological and developmental defects. Total levels of acetylated histones and histone acetylation of both repetitive and nonrepetitive sequences were affected in hda101 transgenic mutants. However, only transcript levels of genes but not repeats were altered. In particular, hda101 transgenic mutants showed differential expression of genes involved in vegetative-to-reproductive transition, such as liguleless2 and knotted-like genes and their repressor rough sheath2, which are required for meristem initiation and maintenance. Perturbation of hda101 expression also affected histone modifications other than acetylation, including histone H3 dimethylation at Lys-4 and Lys-9 and phosphorylation at Ser-10. Our results indicate that hda101 affects gene transcription and provide evidence of its involvement in setting the histone code, thus mediating developmental programs. Possible functional differences between maize hda101 and its Arabidopsis thaliana ortholog HDA19 are discussed.


Assuntos
Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Zea mays/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Cinética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transcrição Gênica , Zea mays/genética
11.
Plant Cell ; 16(2): 510-22, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14729913

RESUMO

A PCR-based genomic scan has been undertaken to estimate the extent and ratio of maternally versus paternally methylated DNA regions in endosperm, embryo, and leaf of Zea mays (maize). Analysis of several inbred lines and their reciprocal crosses identified a large number of conserved, differentially methylated DNA regions (DMRs) that were specific to the endosperm. DMRs were hypomethylated at specific methylation-sensitive restriction sites upon maternal transmission, whereas upon paternal transmission, the methylation levels were similar to those observed in embryo and leaf. Maternal hypomethylation was extensive and offers a likely explanation for the 13% reduction in methyl-cytosine content of the endosperm compared with leaf tissue. DMRs showed identity to expressed genic regions, were observed early after fertilization, and maintained at a later stage of endosperm development. The implications of extensive maternal hypomethylation with respect to endosperm development and epigenetic reprogramming will be discussed.


Assuntos
Metilação de DNA , DNA de Plantas/metabolismo , Folhas de Planta/metabolismo , Sementes/metabolismo , Zea mays/metabolismo , Sítios de Ligação/genética , Southern Blotting , Clonagem Molecular , Sequência Conservada/genética , DNA de Plantas/química , DNA de Plantas/genética , Desoxirribonuclease HpaII/metabolismo , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Polimorfismo de Fragmento de Restrição , Sementes/genética , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNA , Zea mays/genética , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA