Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33361288

RESUMO

Aspergillus fumigatus is the most common opportunistic fungal pathogen and causes invasive pulmonary aspergillosis (IPA), with high mortality among immunosuppressed patients. The fungistatic activity of all-trans retinoic acid (ATRA) has been recently described in vitro We evaluated the efficacy of ATRA in vivo and its potential synergistic interaction with other antifungal drugs. A rat model of IPA and in vitro experiments were performed to assess the efficacy of ATRA against Aspergillus in association with classical antifungal drugs and in silico studies used to clarify its mechanism of action. ATRA (0.5 and 1 mM) displayed a strong fungistatic activity in Aspergillus cultures, while at lower concentrations, synergistically potentiated fungistatic efficacy of subinhibitory concentration of amphotericin B (AmB) and posaconazole (POS). ATRA also enhanced macrophagic phagocytosis of conidia. In a rat model of IPA, ATRA reduced mortality similarly to posaconazole. Fungistatic efficacy of ATRA alone and synergistically with other antifungal drugs was documented in vitro, likely by inhibiting fungal heat shock protein 90 (Hsp90) expression and Hsp90-related genes. ATRA treatment reduced mortality in a model of IPA in vivo Those findings suggest ATRA as a suitable fungistatic agent that can also reduce dosage and adverse reactions of classical antifungal drugs and add to the development of new therapeutic strategies against IPA and systemic fungal infections.


Assuntos
Aspergillus fumigatus , Aspergilose Pulmonar Invasiva , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Humanos , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Ratos , Tretinoína/farmacologia
2.
J Fungi (Basel) ; 10(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667965

RESUMO

In recent years, the incidence of fungal infections in humans has increased dramatically, accompanied by an expansion in the number of species implicated as etiological agents, especially environmental fungi never involved before in human infection. Among fungal pathogens, Candida species are the most common opportunistic fungi that can cause local and systemic infections, especially in immunocompromised individuals. Candida albicans (C. albicans) is the most common causative agent of mucosal and healthcare-associated systemic infections. However, during recent decades, there has been a worrying increase in the number of emerging multi-drug-resistant non-albicans Candida (NAC) species, i.e., C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. auris, and C. ciferrii. In particular, Candida ciferrii, also known as Stephanoascus ciferrii or Trichomonascus ciferrii, is a heterothallic ascomycete yeast-like fungus that has received attention in recent decades as a cause of local and systemic fungal diseases. Today, the new definition of the S. ciferrii complex, which consists of S. ciferrii, Candida allociferrii, and Candida mucifera, was proposed after sequencing the 18S rRNA gene. Currently, the S. ciferrii complex is mostly associated with non-severe ear and eye infections, although a few cases of severe candidemia have been reported in immunocompromised individuals. Low susceptibility to currently available antifungal drugs is a rising concern, especially in NAC species. In this regard, a high rate of resistance to azoles and more recently also to echinocandins has emerged in the S. ciferrii complex. This review focuses on epidemiological, biological, and clinical aspects of the S. ciferrii complex, including its pathogenicity and drug resistance.

3.
Viruses ; 15(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36851567

RESUMO

Currently, the reference method for identifying the presence of variants of SARS-CoV-2 is whole genome sequencing. Although it is less expensive than in the past, it is still time-consuming, and interpreting the results is difficult, requiring staff with specific skills who are not always available in diagnostic laboratories. The test presented in this study aimed to detect, using traditional real-time PCR, the presence of the main variants described for the spike protein of the SARS-CoV-2 genome. The primers and probes were designed to detect the main deletions that characterize the different variants. The amplification targets were deletions in the S gene: 25-27, 69-70, 241-243, and 157-158. In the ORF1a gene, the deletion 3675-3677 was chosen. Some of these mutations can be considered specific variants, while others can be identified by the simultaneous presence of one or more deletions. We avoided using point mutations in order to improve the speed of the test. Our test can help clinical and medical microbiologists quickly recognize the presence of variants in biological samples (particularly nasopharyngeal swabs). The test can also be used to identify variants of the virus that could potentially be more diffusive as well as not responsive to the vaccine.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Primers do DNA , Difusão , Nasofaringe
4.
Case Rep Dermatol ; 15(1): 217-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023344

RESUMO

Green nail syndrome (GNS) is a persistent greenish pigmentation of the nail plate, originally described in 1944 by Goldman and Fox, due to Pseudomonas aeruginosa infection. Recently, pulmonary co-infection of P. aeruginosa and Achromobacter spp. has been described in patients with cystic fibrosis. Achromobacter xylosoxidans is a multidrug-resistant (MDR) pathogen involved in lung and soft tissue skin infections. Both Achromobacter xylosoxidans and P. aeruginosa are mainly found in humid environments or in water. There are no recognized co-infections due to P. aeruginosa and A. xylosoxidans in the skin and appendages. We describe two cases of GNS, the first due to P. aeruginosa associated with Achromobacter xylosoxidans; the other due to MDR P. aeruginosa, both successfully treated with topical ozenoxacin 1% cream daily for 12 weeks. The clinical management of GNS can be confusing, especially when the bacterial culture result is inconsistent or when non-Pseudomonas bacteria are isolated. In our case, due to the co-infection of P. aeruginosa and Achromobacter spp., local treatment with ozenoxacin - the first nonfluorinated quinolone - could be a safe and effective treatment in case of MDR nail infections. Further studies are required to evaluate clinical isolation from nail infections and the co-presence of P. aeruginosa and A. xylosoxidans.

5.
J Fungi (Basel) ; 9(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37888274

RESUMO

Histoplasmosis is a globally distributed systemic infection caused by the dimorphic fungus Histoplasma capsulatum (H. capsulatum). This fungus can cause a wide spectrum of clinical manifestations, and the diagnosis of progressive disseminated histoplasmosis is often a challenge for clinicians. Although microscopy and culture remain the gold standard diagnostic tests for Histoplasma identification, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has emerged as a method of microbial identification suitable for the confirmation of dimorphic fungi. However, to our knowledge, there are no entries for H. capsulatum spectra in most commercial databases. In this review, we describe the case of disseminated histoplasmosis in a patient living with HIV admitted to our university hospital that we failed to identify by the MALDI-TOF method due to the limited reference spectrum of the instrument database. Furthermore, we highlight the utility of molecular approaches, such as conventional polymerase chain reaction (PCR) and DNA sequencing, as alternative confirmatory tests to MALDI-TOF technology for identifying H. capsulatum from positive cultures. An overview of current evidence and limitations of MALDI-TOF-based characterization of H. capsulatum is also presented.

6.
J Fungi (Basel) ; 8(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36294614

RESUMO

Candida albicans (C. albicans) is the most common fungal pathogen causing recurrent mucosal and life-threatening systemic infections. The ability to switch from yeast to hyphae and produce biofilm are the key virulence determinants of this fungus. In fact, Candida biofilms on medical devices represent the major risk factor for nosocomial bloodstream infections. Novel antifungal strategies are required given the severity of systemic candidiasis, especially in immunocompromised patients, and the lack of effective anti-biofilm treatments. Retinoids have gained attention recently due to their antifungal properties. MATERIAL AND METHODS: The present study aimed at evaluating the in vitro effects of different concentrations (300 to 18.75 µg/mL) of All-trans Retinoic Acid (ATRA), a vitamin A metabolite, on Candida growth and biofilm formation. RESULTS: ATRA completely inhibited the fungal growth, by acting as both fungicidal (at 300 µg/mL) and fungistatic (at 150 µg/mL) agent. Furthermore, ATRA was found to negatively affect Candida biofilm formation in terms of biomass, metabolic activity and morphology, in a dose-dependent manner, and intriguingly, its efficacy was as that of amphotericin B (AmB) (2-0.12 µg/mL). Additionally, transmission electron microscopy (TEM) analysis showed that at 300 µg/mL ATRA induced plasma membrane damage in Candida cells, confirming its direct toxic effect against the fungus. CONCLUSION: Altogether, the results suggest that ATRA has a potential for novel antifungal strategies aimed at preventing and controlling biofilm-associated Candida infections.

7.
Sci Rep ; 11(1): 18955, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556690

RESUMO

The world is facing an exceptional pandemic caused by SARS-CoV-2. To allow the diagnosis of COVID-19 infections, several assays based on the real-time PCR technique have been proposed. The requests for diagnosis are such that it was immediately clear that the choice of the most suitable method for each microbiology laboratory had to be based, on the one hand, on the availability of materials, and on the other hand, on the personnel and training priorities for this activity. Unfortunately, due to high demand, the shortage of commercial diagnostic kits has also become a major problem. To overcome these critical issues, we have developed a new qualitative RT-PCR probe. Our system detects three genes-RNA-dependent RNA polymerase (RdRp), envelope (E) and nucleocapsid (N)-and uses the ß-actin gene as an endogenous internal control. The results from our assay are in complete agreement with the results obtained using a commercially available kit, except for two samples that did not pass the endogenous internal control. The coincidence rate was 0.96. The LoD of our assay was 140 cp/reaction for N and 14 cp/reaction for RdRp and E. Our kit was designed to be open, either for the nucleic acid extraction step or for the RT-PCR assay, and to be carried out on several instruments. Therefore, it is free from the industrial production logics of closed systems, and conversely, it is hypothetically available for distribution in large quantities to any microbiological laboratory. The kit is currently distributed worldwide (called MOLgen-COVID-19; Adaltis). A new version of the kit for detecting the S gene is also available.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/genética , COVID-19/genética , Teste para COVID-19/métodos , Técnicas de Laboratório Clínico/métodos , Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Humanos , Pandemias , Fosfoproteínas/genética , Pesquisa Qualitativa , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/patogenicidade , Sensibilidade e Especificidade
8.
Jpn J Infect Dis ; 58(5): 283-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16249622

RESUMO

This study is a critical analysis of certain amplification assays for detecting Chlamydia trachomatis and Neisseria gonorrhoeae infections which have demonstrated that the plasmid-free variant of C. trachomatis is frequently responsible for infection in our patients. Specifically, we evaluated the performance of the strand displacement amplification (SDA) assay in detecting either C. trachomatis or N. gonorrhoeae in 1,190 clinical samples, both urogenital and ocular, from 1,005 consecutive patients. The results obtained with the BDProbeTec ET System were compared with three referenced amplification methods for C. trachomatis (detecting the 16S rRNA gene, the omp1 gene and the plasmid of C. trachomatis) and with both the culture method as well as an amplification assay followed by genetic identification performed using the MicroSeq 500 16S ribosomal DNA-based system for N. gonorrhoeae. The sensitivity of SDA (76%) in detecting C. trachomatis is significantly low when compared with that of other molecular techniques employing 16S rDNA or omp1 as a target. The specificity of the methods for detecting C. trachomatis was excellent, ranging from 99.4 to 100%. Furthermore, the results of SDA in detecting N. gonorrhoeae also provided excellent results (100% specificity and sensitivity).


Assuntos
Chlamydia trachomatis/genética , Chlamydia trachomatis/isolamento & purificação , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Adulto , Infecções por Chlamydia/diagnóstico , Infecções por Chlamydia/microbiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Olho/microbiologia , Feminino , Gonorreia/diagnóstico , Gonorreia/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Amplificação de Ácido Nucleico/estatística & dados numéricos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Sistema Urogenital/microbiologia
9.
J Clin Microbiol ; 43(2): 615-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15695654

RESUMO

Reliable automated identification and susceptibility testing of clinically relevant bacteria is an essential routine for microbiology laboratories, thus improving patient care. Examples of automated identification systems include the Phoenix (Becton Dickinson) and the VITEK 2 (bioMerieux). However, more and more frequently, microbiologists must isolate "difficult" strains that automated systems often fail to identify. An alternative approach could be the genetic identification of isolates; this is based on 16S rRNA gene sequencing and analysis. The aim of the present study was to evaluate the possible use of MicroSeq 500 (Applera) for sequencing the 16S rRNA gene to identify isolates whose identification is unobtainable by conventional systems. We analyzed 83 "difficult" clinical isolates: 25 gram-positive and 58 gram-negative strains that were contemporaneously identified by both systems--VITEK 2 and Phoenix--while genetic identification was performed by using the MicroSeq 500 system. The results showed that phenotypic identifications by VITEK 2 and Phoenix were remarkably similar: 74% for gram-negative strains (43 of 58) and 80% for gram-positive strains were concordant by both systems and also concordant with genetic characterization. The exceptions were the 15 gram-negative and 9 gram-positive isolates whose phenotypic identifications were contrasting or inconclusive. For these, the use of MicroSeq 500 was fundamental to achieving species identification. In clinical microbiology the use of MicroSeq 500, particularly for strains with ambiguous biochemical profiles (including slow-growing strains), identifies strains more easily than do conventional systems. Moreover, MicroSeq 500 is easy to use and cost-effective, making it applicable also in the clinical laboratory.


Assuntos
Técnicas de Tipagem Bacteriana , Genes de RNAr , Bactérias Gram-Negativas/classificação , Bactérias Gram-Positivas/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/análise , DNA Ribossômico/análise , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/microbiologia , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/isolamento & purificação , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Dados de Sequência Molecular
10.
J Clin Microbiol ; 41(8): 3636-40, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12904368

RESUMO

The recognition of the role of Helicobacter pylori in gastric diseases has led to the widespread use of antibiotics in the eradication of this pathogen. The most advocated therapy, triple therapy, often includes clarithromycin. It is well known that clarithromycin resistance is one of the major causes of eradication failure. The development of a rapid noninvasive technique that could easily be performed on fecal samples and that could also provide information about the antibiotic resistance of this microorganism is therefore advisable. Previous findings have demonstrated that clarithromycin resistance is due to a single point mutation in the 23S rRNA. All the mutations described have been associated with specific restriction sites, namely BsaI (A2143G), MboII (A2142C/G), and HhaI (T2717C). On this basis we have developed a new method, a seminested PCR, allowing screening for clarithromycin resistance of H. pylori directly on stool samples. This method furnished a 783-bp fragment of the 23S rRNA, which was subsequently digested by MboII, BsaI, and HhaI, in order to identify single point mutations associated with clarithromycin resistance. Of a total of 283 stool samples examined, 125 were H. pylori positive and two of them were shown to contain clarithromycin-resistant strains due to the presence of a mutation at position 2717, whereas no PCR products contained mutations at position 2142 or 2143. In order to evaluate the reliability of the new system, we compared the results of restriction analysis of the PCR products with the MICs shown by the H. pylori isolates by culturing gastric biopsies from the same patients.


Assuntos
Claritromicina/farmacologia , Fezes/microbiologia , Infecções por Helicobacter/diagnóstico , Helicobacter pylori/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Antibacterianos , Pareamento de Bases , Sequência de Bases , Primers do DNA , Farmacorresistência Bacteriana , Amplificação de Genes , Helicobacter pylori/genética , Humanos , Mapeamento por Restrição , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA