Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Carcinogenesis ; 42(12): 1449-1460, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34687205

RESUMO

Epithelial-to-mesenchymal transition (EMT) is involved in prostate cancer (PCa) metastatic progression, and its plasticity suggests epigenetic implications. Deregulation of DNA methyltransferases (DNMTs) and several microRNAs (miRNAs) plays a relevant role in EMT, but their interplay has not been clarified yet. In this study, we provide evidence that DNMT3A interaction with several miRNAs has a central role in an ex vivo EMT PCa model obtained via exposure of PC3 cells to conditioned media from cancer-associated fibroblasts. The analysis of the alterations of the miRNA profile shows that miR-200 family (miR-200a/200b/429, miR-200c/141), miR-205 and miR-203, known to modulate key EMT factors, are down-regulated and hyper-methylated at their promoters. DNMT3A (mainly isoform a) is recruited onto these miRNA promoters, coupled with the increase of H3K27me3/H3K9me3 and/or the decrease of H3K4me3/H3K36me3. Most interestingly, our results reveal the differential expression of two DNMT3A isoforms (a and b) during ex vivo EMT and a regulatory feedback loop between miR-429 and DNMT3A that can promote and sustain the transition towards a more mesenchymal phenotype. We demonstrate the ability of miR-429 to target DNMT3A 3'UTR and modulate the expression of EMT factors, in particular ZEB1. Survey of the PRAD-TCGA dataset shows that patients expressing an EMT-like signature are indeed characterized by down-regulation of the same miRNAs with a diffused hyper-methylation at miR-200c/141 and miR-200a/200b/429 promoters. Finally, we show that miR-1260a also targets DNMT3A, although it does not seem to be involved in EMT in PCa.


Assuntos
DNA Metiltransferase 3A/metabolismo , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Metilação de DNA , Suscetibilidade a Doenças , Humanos , Masculino , Regiões Promotoras Genéticas , Neoplasias da Próstata/patologia , Ligação Proteica , Interferência de RNA , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
2.
BMC Cell Biol ; 13: 19, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22783988

RESUMO

BACKGROUND: MeCP2 (CpG-binding protein 2) is a nuclear multifunctional protein involved in several cellular processes, like large-scale chromatin reorganization and architecture, and transcriptional regulation. In recent years, a non-neuronal role for MeCP2 has emerged in cell growth and proliferation. Mutations in the MeCP2 gene have been reported to determine growth disadvantages in cultured lymphocyte cells, and its functional ablation suppresses cell growth in glial cells and proliferation in mesenchymal stem cells and prostate cancer cells. MeCP2 interacts with lamin B receptor (LBR) and with Heterochromatin Protein 1 (HP1) at the nuclear envelope (NE), suggesting that it could be part of complexes involved in attracting heterochromatin at the nuclear periphery and in mediating gene silencing. The nuclear lamins, major components of the lamina, have a role in maintaining NE integrity, in orchestrating mitosis, in DNA replication and transcription, in regulation of mitosis and apoptosis and in providing anchoring sites for chromatin domains.In this work, we inferred that MeCP2 might have a role in nuclear envelope stability, thereby affecting the proliferation pattern of highly proliferating systems. RESULTS: By performing knock-down (KD) of MeCP2 in normal murine (NIH-3 T3) and in human prostate transformed cells (PC-3 and LNCaP), we observed a strong proliferation decrease and a defect in the cell cycle progression, with accumulation of cells in S/G2M, without triggering a strong apoptotic and senescent phenotype. In these cells, KD of MeCP2 evidenced a considerable decrease of the levels of lamin A, lamin C, lamin B1 and LBR proteins. Moreover, by confocal analysis we confirmed the reduction of lamin A levels, but we also observed an alteration in the shape of the nuclear lamina and an irregular nuclear rim. CONCLUSIONS: Our results that indicate reduced levels of NE components, are consistent with a hypothesis that the deficiency of MeCP2 might cause the lack of a key "bridge" function that links the peripheral heterochromatin to the NE, thereby causing an incorrect assembly of the NE itself, together with a decreased cell proliferation and viability.


Assuntos
Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Proteína 2 de Ligação a Metil-CpG/antagonistas & inibidores , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Células NIH 3T3 , Membrana Nuclear/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor de Lamina B
3.
Mol Biol Cell ; 18(3): 1098-106, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17182844

RESUMO

Heterochromatin plays an important role in transcriptional repression, for the correct segregation of chromosomes and in the maintenance of genome stability. Pericentric heterochromatin (PH) replication and formation have been proposed to occur in the pericentric heterochromatin duplication body (pHDB). A central question is how the underacetylated state of heterochromatic histone H4 tail is established and controlled, because it is a key event during PH replication and is essential to maintain the compacted and silenced state of these regions. Np95 is a cell cycle regulated and is a nuclear histone-binding protein that also recruits HDAC-1 to target promoters. It is essential for S phase and for embryonic formation and is implicated in chromosome stability. Here we show that Np95 is part of the pHDB, and its functional ablation causes a strong reduction in PH replication. Depletion of Np95 also causes a hyperacetylation of lysines 8, 12, and 16 of heterochromatin histone H4 and an increase of pericentromeric major satellite transcription, whose RNAs are key players for heterochromatin formation. We propose that Np95 is a new relevant protein involved in heterochromatin replication and formation.


Assuntos
Centrômero/metabolismo , Replicação do DNA , DNA Satélite/genética , Inativação Gênica , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , Acetilação , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Histonas/metabolismo , Humanos , Lisina/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Nucleares/deficiência , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fase S , Ubiquitina-Proteína Ligases , Regulação para Cima/genética
4.
Biochim Biophys Acta Gene Regul Mech ; 1861(3): 258-270, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29466696

RESUMO

Non-coding RNAs (ncRNAs) transcribed from the promoter and the downstream region can affect the expression of the corresponding coding genes. It has been shown that sense-directed ncRNAs arising from the promoter region of the E-cadherin gene (CDH1) mediate its repression. Here, we show that an antisense-directed ncRNA (paRCDH1-AS) transcribed from the CDH1 promoter is necessary for its expression. paRCDH1-AS acts as a hooking scaffold by recruiting the epigenetic regulators, UHRF1, DNMT3A, SUV39H1 and SUZ12, involved in CDH1 repression. The binding of epigenetic regulators to paCRDH1-AS, indeed, prevents their localization to the chromatin on CDH1 promoter. Moreover, paRCDH1-AS silencing induces CDH1 repression and a switch of the epigenetic profile on the promoter towards a more closed chromatin. Using bioinformatic and experimental approaches we defined that the promoter of the paRCDH1-AS is shared with the E-cadherin gene, showing a bidirectional promoter activity. We found that UHRF1 controls both CDH1 and paRCDH1-AS by directly binding this bidirectional promoter region. Our study provides evidences, for the first time, that UHRF1 recruitment can be affected by promoter-associated non-coding RNAs, opening new perspective regarding the role of UHRF1 in these complex regulatory networks.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Caderinas/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , RNA não Traduzido/genética , Antígenos CD , Caderinas/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Modelos Biológicos , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Ubiquitina-Proteína Ligases
5.
Mol Biol Cell ; 19(8): 3554-63, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18508923

RESUMO

Heterochromatic chromosomal regions undergo large-scale reorganization and progressively aggregate, forming chromocenters. These are dynamic structures that rapidly adapt to various stimuli that influence gene expression patterns, cell cycle progression, and differentiation. Np95-ICBP90 (m- and h-UHRF1) is a histone-binding protein expressed only in proliferating cells. During pericentromeric heterochromatin (PH) replication, Np95 specifically relocalizes to chromocenters where it highly concentrates in the replication factories that correspond to less compacted DNA. Np95 recruits HDAC and DNMT1 to PH and depletion of Np95 impairs PH replication. Here we show that Np95 causes large-scale modifications of chromocenters independently from the H3:K9 and H4:K20 trimethylation pathways, from the expression levels of HP1, from DNA methylation and from the cell cycle. The PHD domain is essential to induce this effect. The PHD domain is also required in vitro to increase access of a restriction enzyme to DNA packaged into nucleosomal arrays. We propose that the PHD domain of Np95-ICBP90 contributes to the opening and/or stabilization of dense chromocenter structures to support the recruitment of modifying enzymes, like HDAC and DNMT1, required for the replication and formation of PH.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Centrômero/ultraestrutura , Heterocromatina/fisiologia , Acetilação , Animais , Ciclo Celular , Cromatina/química , Metilação de DNA , Heterocromatina/química , Histonas/química , Camundongos , Modelos Biológicos , Células NIH 3T3 , Nucleossomos/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA