Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(18): e2120340119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482922

RESUMO

Advanced therapies are commonly administered via injection even when they act within the skin tissue, and this increases the chances of off-target effects. Here we report the use of a skin patch containing a hypobaric chamber that induces skin dome formation to enable needleless delivery of advanced therapies directly into porcine, rat, and mouse skin. Finite element method modeling showed that the hypobaric chamber in the patch opened the skin appendages by 32%, thinned the skin, and compressed the appendage wall epithelia. These changes allowed direct delivery of an H1N1 vaccine antigen and a diclofenac nanotherapeutic into the skin. Fluorescence imaging and infrared mapping of the skin showed needleless delivery via the appendages. The in vivo utility of the patch was demonstrated by a superior immunoglobulin G response to the vaccine antigen in mice compared to intramuscular injection and a 70% reduction in rat paw swelling in vivo over 5 h with diclofenac without skin histology changes.


Assuntos
Pele , Vacinas , Administração Cutânea , Animais , Camundongos , Agulhas , Ratos , Pele/metabolismo , Absorção Cutânea , Suínos
2.
Brain Behav Immun ; 83: 248-259, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669344

RESUMO

Chemotherapy-induced neuropathic pain is a dose-limiting side effect of many cancer therapies due to their propensity to accumulate in peripheral nerves, which is facilitated by the permeability of the blood-nerve barrier. Preclinically, the chemotherapy agent vincristine (VCR) activates endothelial cells in the murine peripheral nervous system and in doing so allows the infiltration of monocytes into nerve tissue where they orchestrate the development of VCR-induced nociceptive hypersensitivity. In this study we demonstrate that VCR also activates endothelial cells in the murine central nervous system, increases paracellular permeability and decreases trans endothelial resistance. In in vivo imaging studies in mice, VCR administration results in trafficking of inflammatory monocytes through the endothelium. Indeed, VCR treatment affects the integrity of the blood-spinal cord-barrier as indicated by Evans Blue extravasation, disrupts tight junction coupling and is accompanied by the presence of monocytes in the spinal cord. Such inflammatory monocytes (Iba-1+ CCR2+ Ly6C+ TMEM119- cells) that infiltrate the spinal cord also express the pro-nociceptive cysteine protease Cathepsin S. Systemic treatment with a CNS-penetrant, but not a peripherally-restricted, inhibitor of Cathepsin S prevents the development of VCR-induced hypersensitivity, suggesting that infiltrating monocytes play a functional role in sensitising spinal cord nociceptive neurons. Our findings guide us towards a better understanding of central mechanisms of pain associated with VCR treatment and thus pave the way for the development of innovative antinociceptive strategies.


Assuntos
Permeabilidade Capilar , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neuralgia/fisiopatologia , Medula Espinal/irrigação sanguínea , Animais , Células Endoteliais/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/induzido quimicamente
3.
Bioorg Med Chem Lett ; 29(8): 995-1000, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30792038

RESUMO

Oxadiazole replacement of an amide linkage in an RARα agonist template 1, followed by lead optimisation, has produced a highly potent and selective RARß agonist 4-(5-(4,7-dimethylbenzofuran-2-yl)-1,2,4-oxadiazol-3-yl)benzoic acid (10) with good oral bioavailability in the rat and dog. This molecule increases neurite outgrowth in vitro and induces sensory axon regrowth in vivo in a rodent model of avulsion and crush injury, and thus has the potential for the treatment of nerve injury.


Assuntos
Oxidiazóis/química , Receptores do Ácido Retinoico/agonistas , Administração Oral , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Locomoção/efeitos dos fármacos , Células Madin Darby de Rim Canino , Crescimento Neuronal/efeitos dos fármacos , Traumatismos do Nervo Óptico/tratamento farmacológico , Oxidiazóis/farmacocinética , Oxidiazóis/farmacologia , Ratos , Receptores do Ácido Retinoico/metabolismo , Relação Estrutura-Atividade
4.
J Physiol ; 595(8): 2661-2679, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28105664

RESUMO

KEY POINTS: Voltage-gated sodium channels play a fundamental role in determining neuronal excitability. Specifically, voltage-gated sodium channel subtype NaV 1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown. Using comparative behavioural models evoking somatic and visceral pain pathways, we identify the requirement for NaV 1.7 in regulating somatic (noxious heat pain threshold) but not in visceral pain signalling. These results enable us to better understand the mechanisms underlying the transduction of noxious stimuli from the viscera, suggest that the investigation of pain pathways should be undertaken in a modality-specific manner and help to direct drug discovery efforts towards novel visceral analgesics. ABSTRACT: Voltage-gated sodium channel NaV 1.7 is required for acute and inflammatory pain in mice and humans but its significance for visceral pain is unknown. Here we examine the role of NaV 1.7 in visceral pain processing and the development of referred hyperalgesia using a conditional nociceptor-specific NaV 1.7 knockout mouse (NaV 1.7Nav1.8 ) and selective small-molecule NaV 1.7 antagonist PF-5198007. NaV 1.7Nav1.8 mice showed normal nociceptive behaviours in response to intracolonic application of either capsaicin or mustard oil, stimuli known to evoke sustained nociceptor activity and sensitization following tissue damage, respectively. Normal responses following induction of cystitis by cyclophosphamide were also observed in both NaV 1.7Nav1.8 and littermate controls. Loss, or blockade, of NaV 1.7 did not affect afferent responses to noxious mechanical and chemical stimuli in nerve-gut preparations in mouse, or following antagonism of NaV 1.7 in resected human appendix stimulated by noxious distending pressures. However, expression analysis of voltage-gated sodium channel α subunits revealed NaV 1.7 mRNA transcripts in nearly all retrogradely labelled colonic neurons, suggesting redundancy in function. By contrast, using comparative somatic behavioural models we identify that genetic deletion of NaV 1.7 (in NaV 1.8-expressing neurons) regulates noxious heat pain threshold and that this can be recapitulated by the selective NaV 1.7 antagonist PF-5198007. Our data demonstrate that NaV 1.7 (in NaV 1.8-expressing neurons) contributes to defined pain pathways in a modality-dependent manner, modulating somatic noxious heat pain, but is not required for visceral pain processing, and advocate that pharmacological block of NaV 1.7 alone in the viscera may be insufficient in targeting chronic visceral pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/deficiência , Nociceptores/metabolismo , Dor Visceral/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Capsaicina/toxicidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mostardeira/toxicidade , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor Nociceptiva/induzido quimicamente , Dor Nociceptiva/genética , Dor Nociceptiva/metabolismo , Nociceptores/efeitos dos fármacos , Óleos de Plantas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Dor Visceral/induzido quimicamente , Dor Visceral/genética
5.
J Pharmacol Exp Ther ; 358(3): 387-96, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27335437

RESUMO

Cathepsin S inhibitors attenuate mechanical allodynia in preclinical neuropathic pain models. The current study evaluated the effects when combining the selective cathepsin S inhibitor MIV-247 with gabapentin or pregabalin in a mouse model of neuropathic pain. Mice were rendered neuropathic by partial sciatic nerve ligation. MIV-247, gabapentin, or pregabalin were administered alone or in combination via oral gavage. Mechanical allodynia was assessed using von Frey hairs. Neurobehavioral side effects were evaluated by assessing beam walking. MIV-247, gabapentin, and pregabalin concentrations in various tissues were measured. Oral administration of MIV-247 (100-200 µmol/kg) dose-dependently attenuated mechanical allodynia by up to approximately 50% reversal when given as a single dose or when given twice daily for 5 days. No behavioral deficits were observed at any dose of MIV-247 tested. Gabapentin (58-350 µmol/kg) and pregabalin (63-377 µmol/kg) also inhibited mechanical allodynia with virtually complete reversal at the highest doses tested. The minimum effective dose of MIV-247 (100 µmol/kg) in combination with the minimum effective dose of pregabalin (75 µmol/kg) or gabapentin (146 µmol/kg) resulted in enhanced antiallodynic efficacy without augmenting side effects. A subeffective dose of MIV-247 (50 µmol/kg) in combination with a subeffective dose of pregabalin (38 µmol/kg) or gabapentin (73 µmol/kg) also resulted in substantial efficacy. Plasma levels of MIV-247, gabapentin, and pregabalin were similar when given in combination as to when given alone. Cathepsin S inhibition with MIV-247 exerts significant antiallodynic efficacy alone, and also enhances the effect of gabapentin and pregabalin without increasing side effects or inducing pharmacokinetic interactions.


Assuntos
Aminas/farmacologia , Catepsinas/antagonistas & inibidores , Ácidos Cicloexanocarboxílicos/farmacologia , Dipeptídeos/farmacologia , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Pregabalina/farmacologia , Inibidores de Proteases/farmacologia , Ácido gama-Aminobutírico/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Dipeptídeos/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Gabapentina , Humanos , Hiperalgesia/enzimologia , Masculino , Camundongos , Neuralgia/enzimologia , Inibidores de Proteases/uso terapêutico
7.
Neurobiol Pain ; 6: 100032, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223140

RESUMO

Chronic itch is a debilitating condition characterised by excessive scratching and is a symptom frequently reported in skin diseases such as atopic dermatitis. It has been proposed that release of the cysteine protease Cathepsin S (CatS) from skin keratinocytes or immune cells resident in or infiltrating the skin could act as a pruritogen in chronic itch conditions. CatS is known to activate protease-activated receptor 2 (PAR2). We therefore hypothesised that enzymatic activation of neuronally expressed PAR2 by CatS was responsible for activation of sensory neurons and transmission of itch signals. Intradermally-injected human recombinant (hr)-CatS or the PAR2 agonist, SLIGRL-NH2 behaved as pruritogens by causing scratching behaviour in mice. Hr-CatS-induced scratching behaviour was prevented by CatS inhibitors and PAR2 antagonists and reduced by 50% in TRPV1-/- mice compared with wild-type mice, whilst no significant reduction in scratching behaviour was observed in TRPA1-/- mice. Cultured dorsal root ganglion (DRG) cells showed an increase in [Ca2+]i following incubation with hr-CatS, and the percentage of neurons that responded to hr-CatS decreased in the presence of a PAR2 antagonist or in cultures of neurons from TRPV1-/- mice. Taken together, our results indicate CatS acts as a pruritogen via PAR2 activation in TRPV1-expressing sensory neurons.

8.
Nat Commun ; 8(1): 1778, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176651

RESUMO

Following peripheral axon injury, dysregulation of non-coding microRNAs (miRs) occurs in dorsal root ganglia (DRG) sensory neurons. Here we show that DRG neuron cell bodies release extracellular vesicles, including exosomes containing miRs, upon activity. We demonstrate that miR-21-5p is released in the exosomal fraction of cultured DRG following capsaicin activation of TRPV1 receptors. Pure sensory neuron-derived exosomes released by capsaicin are readily phagocytosed by macrophages in which an increase in miR-21-5p expression promotes a pro-inflammatory phenotype. After nerve injury in mice, miR-21-5p is upregulated in DRG neurons and both intrathecal delivery of a miR-21-5p antagomir and conditional deletion of miR-21 in sensory neurons reduce neuropathic hypersensitivity as well as the extent of inflammatory macrophage recruitment in the DRG. We suggest that upregulation and release of miR-21 contribute to sensory neuron-macrophage communication after damage to the peripheral nerve.


Assuntos
Exossomos/metabolismo , Gânglios Espinais/metabolismo , Macrófagos/imunologia , MicroRNAs/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axônios/metabolismo , Exossomos/genética , Gânglios Espinais/citologia , Gânglios Espinais/lesões , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neuralgia/genética , Neuralgia/imunologia , Fagocitose , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
9.
J Vis Exp ; (111)2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27214709

RESUMO

A major symptom of patients with osteoarthritis (OA) is pain that is triggered by peripheral as well as central changes within the pain pathways. The current treatments for OA pain such as NSAIDS or opiates are neither sufficiently effective nor devoid of detrimental side effects. Animal models of OA are being developed to improve our understanding of OA-related pain mechanisms and define novel pharmacological targets for therapy. Currently available models of OA in rodents include surgical and chemical interventions into one knee joint. The monoiodoacetate (MIA) model has become a standard for modelling joint disruption in OA in both rats and mice. The model, which is easier to perform in the rat, involves injection of MIA into a knee joint that induces rapid pain-like responses in the ipsilateral limb, the level of which can be controlled by injection of different doses. Intra-articular injection of MIA disrupts chondrocyte glycolysis by inhibiting glyceraldehyde-3-phosphatase dehydrogenase and results in chondrocyte death, neovascularization, subchondral bone necrosis and collapse, as well as inflammation. The morphological changes of the articular cartilage and bone disruption are reflective of some aspects of patient pathology. Along with joint damage, MIA injection induces referred mechanical sensitivity in the ipsilateral hind paw and weight bearing deficits that are measurable and quantifiable. These behavioral changes resemble some of the symptoms reported by the patient population, thereby validating the MIA injection in the knee as a useful and relevant pre-clinical model of OA pain. The aim of this article is to describe the methodology of intra-articular injections of MIA and the behavioral recordings of the associated development of hypersensitivity with a mind to highlight the necessary steps to give consistent and reliable recordings.


Assuntos
Artrite Experimental/patologia , Modelos Animais de Doenças , Osteoartrite do Joelho/patologia , Dor/patologia , Animais , Artrite Experimental/induzido quimicamente , Comportamento Animal , Cartilagem Articular/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Inibidores Enzimáticos/toxicidade , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Inflamação/patologia , Injeções Intra-Articulares , Ácido Iodoacético/toxicidade , Articulação do Joelho/patologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho/induzido quimicamente , Dor/induzido quimicamente , Limiar da Dor , Suporte de Carga/fisiologia
10.
Pain ; 157(10): 2285-2296, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27306045

RESUMO

Individuals with Alzheimer's disease (AD) are in susceptible patient groups in which pain is an important clinical issue that is often underdiagnosed. However, it is unclear whether decreased pain complaints in patients with AD result from elevated pain tolerance or an impaired ability to communicate sensations. Here, we explored if AD-related pathology is present in key regions of the pain pathway and assessed whether nociceptive thresholds to acute noxious stimulation are altered in the double-mutant APPswe × PS1.M146V (TASTPM) transgenic mouse model of AD. TASTPM mice exhibited an age-dependant cognitive deficit at the age of 6 months, but not at 4 months, a deficit that was accompanied by amyloid plaques in the cortex, hippocampus, and thalamus. In the spinal cord, ß-amyloid (APP/Aß) immunoreactivity was observed in dorsal and ventral horn neurons, and the expression of vesicular glutamate transporter 2 (VGLUT2) was significantly reduced, while the expression of the inhibitory peptides enkephalins was increased in TASTPM dorsal horn, consistent with an increased inhibitory tone. TASTPM mice displayed reduced sensitivity to acute noxious heat, which was reversed by naloxone, an opioid antagonist. This study suggests that increased inhibition and decreased excitation in the spinal cord may be responsible for the reduced thermal sensitivity associated with AD-related pathology.


Assuntos
Doença de Alzheimer/complicações , Analgésicos Opioides/metabolismo , Transtornos Cognitivos/etiologia , Limiar Sensorial/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Carragenina/toxicidade , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Naloxona/toxicidade , Antagonistas de Entorpecentes/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Dor/induzido quimicamente , Medição da Dor , Presenilina-1/genética , Presenilina-1/metabolismo , Reconhecimento Psicológico/fisiologia , Limiar Sensorial/efeitos dos fármacos
11.
Pain ; 157(3): 666-676, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26574822

RESUMO

Severe pain is a common and debilitating complication of metastatic bone cancer. Current analgesics provide insufficient pain relief and often lead to significant adverse effects. In models of cancer-induced bone pain, pathological sprouting of sensory fibers at the tumor-bone interface occurs concomitantly with reactive astrocytosis in the dorsal horn of the spinal cord. We observed that calcitonin gene-related peptide (CGRP)-fiber sprouting in the bone was associated with an increase in CGRP content in sensory neuron cell bodies in the dorsal root ganglia (DRG) and increased basal and activity-evoked release of CGRP from their central terminals in the dorsal horn. Intrathecal administration of a peptide antagonist (α-CGRP8-37) attenuated referred allodynia in the hind paw ipsilateral to bone cancer. CGRP receptor components (CLR and RAMP1) were up-regulated in dorsal horn neurons and expressed by reactive astrocytes. In primary cultures of astrocytes, CGRP incubation led to a concentration-dependent increase of forskolin-induced cAMP production, which was attenuated by pretreatment with CGRP8-37. Furthermore, CGRP induced ATP release in astrocytes, which was inhibited by CGRP8-37. We suggest that the peripheral increase in CGRP content observed in cancer-induced bone pain is mirrored by a central increase in the extracellular levels of CGRP. This increase in CGRP not only may facilitate glutamate-driven neuronal nociceptive signaling but also act on astrocytic CGRP receptors and lead to release of ATP.


Assuntos
Neoplasias Ósseas/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Dor/metabolismo , Medula Espinal/metabolismo , Animais , Neoplasias Ósseas/patologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C3H , Técnicas de Cultura de Órgãos , Dor/patologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA