Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226694

RESUMO

Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis (MS) and have implications for non-relapsing biological progression. In recent years, the discovery of innovative magnetic resonance imaging (MRI) and PET derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with MS, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted (T1-w) and T2-w scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification, and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a Consensus Statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this Consensus Statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.

2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473703

RESUMO

Multiple sclerosis (MS) is the most common autoimmune demyelinating disease of the central nervous system (CNS), consisting of heterogeneous clinical courses varying from relapsing-remitting MS (RRMS), in which disability is linked to bouts of inflammation, to progressive disease such as primary progressive MS (PPMS) and secondary progressive MS (SPMS), in which neurological disability is thought to be linked to neurodegeneration. As a result, successful therapeutics for progressive MS likely need to have both anti-inflammatory and direct neuroprotective properties. The modulation of sphingosine-1-phosphate (S1P) receptors has been implicated in neuroprotection in preclinical animal models. Siponimod/BAF312, the first oral treatment approved for SPMS, may have direct neuroprotective benefits mediated by its activity as a selective (S1P receptor 1) S1P1 and (S1P receptor 5) S1P5 modulator. We showed that S1P1 was mainly present in cortical neurons in lesioned areas of the MS brain. To gain a better understanding of the neuroprotective effects of siponimod in MS, we used both rat neurons and human-induced pluripotent stem cell (iPSC)-derived neurons treated with the neuroinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Cell survival/apoptotic assays using flow cytometry and IncuCyte live cell analyses showed that siponimod decreased TNF-α induced neuronal cell apoptosis in both rat and human iPSCs. Importantly, a transcriptomic analysis revealed that mitochondrial oxidative phosphorylation, NFκB and cytokine signaling pathways contributed to siponimod's neuroprotective effects. Our data suggest that the neuroprotection of siponimod/BAF312 likely involves the relief of oxidative stress in neuronal cells. Further studies are needed to explore the molecular mechanisms of such interactions to determine the relationship between mitochondrial dysfunction and neuroinflammation/neurodegeneration.


Assuntos
Azetidinas , Compostos de Benzil , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Fármacos Neuroprotetores , Humanos , Animais , Ratos , Receptores de Esfingosina-1-Fosfato , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fator de Necrose Tumoral alfa/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Morte Celular
3.
Neurol Neurochir Pol ; 56(3): 228-235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712986

RESUMO

For the past four decades, multiple sclerosis (MS) has been a focus for clinical trial development and execution. Advances in translational neuroimmunology have led to the development of effective disease-modifying therapies (DMTs) that greatly benefit patients with MS and mitigate their burden of disease. These achievements also stem from continued progress made in the definition and discovery of sensitive disease diagnostic criteria, objective disability assessment scales, precise imaging techniques, and disease-specific biomarkers. As a result, our knowledge of MS pathophysiology is more mature; the established clinical practice for the diagnosis and management of MS could serve as a roadmap to guide the development of more disease-specific interventions. In this article we briefly review the main achievements in the evolution of clinical trials for MS, and discuss opportunities for improvements.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/terapia
4.
NMR Biomed ; 34(11): e4590, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34318959

RESUMO

The pathophysiology of progressive multiple sclerosis remains elusive, significantly limiting available disease-modifying therapies. Proton MRS (1 H-MRS) enables in vivo measurement of small molecules implicated in multiple sclerosis, but its application to key metabolites glutamate, γ-aminobutyric acid (GABA), and glutathione has been sparse. We employed, at 7 T, a previously validated 1 H-MRS protocol to measure glutamate, GABA, and glutathione, as well as glutamine, N-acetyl aspartate, choline, and myoinositol, in the frontal cortex of individuals with relapsing-remitting (N = 26) or progressive (N = 21) multiple sclerosis or healthy control adults (N = 25) in a cross-sectional analysis. Only individuals with progressive multiple sclerosis demonstrated reduced glutamate (F2,65 = 3.424, p = 0.04; 12.40 ± 0.62 mM versus control 13.17 ± 0.95 mM, p = 0.03) but not glutamine (F2,65 = 0.352, p = 0.7; 4.71 ± 0.35 mM versus control 4.84 ± 0.42 mM), reduced GABA (F2,65 = 3.89, p = 0.03; 1.29 ± 0.23 mM versus control 1.47 ± 0.25 mM, p = 0.05), and possibly reduced glutathione (F2,65 = 0.352, p = 0.056; 2.23 ± 0.46 mM versus control 2.51 ± 0.48 mM, p < 0.1). As a group, multiple sclerosis patients demonstrated significant negative correlations between disease duration and glutamate or GABA (ρ = -0.4, p = 0.02) but not glutamine or glutathione. Alone, only relapsing-remitting multiple sclerosis patients exhibited a significant negative correlation between disease duration and GABA (ρ = -0.5, p = 0.03). Taken together, these results indicate that frontal cortex metabolism is differentially disturbed in progressive and relapsing-remitting multiple sclerosis.


Assuntos
Lobo Frontal/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Adulto , Idoso , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Feminino , Glutamina/metabolismo , Glutationa/metabolismo , Substância Cinzenta/metabolismo , Humanos , Inositol/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Metaboloma , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Neurotransmissores/metabolismo , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
5.
Brain ; 142(1): 133-145, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561514

RESUMO

Chronic active multiple sclerosis lesions, characterized by a hyperintense rim of iron-enriched, activated microglia and macrophages, have been linked to greater tissue damage. Post-mortem studies have determined that chronic active lesions are primarily related to the later stages of multiple sclerosis; however, the occurrence of these lesions, and their relationship to earlier disease stages may be greatly underestimated. Detection of chronic active lesions across the patient spectrum of multiple sclerosis requires a validated imaging tool to accurately identify lesions with persistent inflammation. Quantitative susceptibility mapping provides efficient in vivo quantification of susceptibility changes related to iron deposition and the potential to identify lesions harbouring iron-laden inflammatory cells. The PET tracer 11C-PK11195 targets the translocator protein expressed by activated microglia and infiltrating macrophages. Accordingly, this study aimed to validate that lesions with a hyperintense rim on quantitative susceptibility mapping from both relapsing and progressive patients demonstrate a higher level of innate immune activation as measured on 11C-PK11195 PET. Thirty patients were enrolled in this study, 24 patients had relapsing remitting multiple sclerosis, six had progressive multiple sclerosis, and all patients had concomitant MRI with a gradient echo sequence and PET with 11C-PK11195. A total of 406 chronic lesions were detected, and 43 chronic lesions with a hyperintense rim on quantitative susceptibility mapping were identified as rim+ lesions. Susceptibility (relative to CSF) was higher in rim+ (2.42 ± 17.45 ppb) compared to rim- lesions (-14.6 ± 19.3 ppb, P < 0.0001). Among rim+ lesions, susceptibility within the rim (20.04 ± 14.28 ppb) was significantly higher compared to the core (-5.49 ± 14.44 ppb, P < 0.0001), consistent with the presence of iron. In a mixed-effects model, 11C-PK11195 uptake, representing activated microglia/macrophages, was higher in rim+ lesions compared to rim- lesions (P = 0.015). Validating our in vivo imaging results, multiple sclerosis brain slabs were imaged with quantitative susceptibility mapping and processed for immunohistochemistry. These results showed a positive translocator protein signal throughout the expansive hyperintense border of rim+ lesions, which co-localized with iron containing CD68+ microglia and macrophages. In conclusion, this study provides evidence that suggests that a hyperintense rim on quantitative susceptibility measure within a chronic lesion is a correlate for persistent inflammatory activity and that these lesions can be identified in the relapsing patients. Utilizing quantitative susceptibility measure to differentiate chronic multiple sclerosis lesion subtypes, especially chronic active lesions, would provide a method to assess the impact of these lesions on disease progression.


Assuntos
Inflamação/diagnóstico por imagem , Inflamação/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Adulto , Idoso , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Encéfalo/metabolismo , Radioisótopos de Carbono/metabolismo , Doença Crônica , Estudos Transversais , Feminino , Humanos , Inflamação/complicações , Inflamação/metabolismo , Ferro/metabolismo , Isoquinolinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Microglia/imunologia , Microglia/metabolismo , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/metabolismo , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos , Adulto Jovem
6.
J Environ Manage ; 275: 111075, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32861905

RESUMO

We investigate a new framework for estimating the frequency and severity of losses associated with catastrophic risks such as bushfires, storms and floods. We explore generalized additive models for location, scale and shape (GAMLSS) for the quantification of regional risk factors - geographical, weather and climate variables - with the aim of better quantifying the frequency and severity of catastrophic losses from natural perils. Due to the flexibility of the GAMLSS approach, we find a superior fit to empirical loss data for the applied models in comparison to generalized linear regression models typically applied in the literature. In particular the generalized beta distribution of the second kind (GB2) provides a good fit to the severity of losses. Including covariates in the calibration of the scale parameter, we obtain vastly differently shaped distributions for the predicted individual losses at different levels of the covariates. Testing the GAMLSS approach in an out-of-sample validation exercise, we also find support for a correct specification of the estimated models. More accurate models for the losses from natural hazards will help state and local government policy development, in particular for risk management and scenario planning for emergency services with respect to these perils.


Assuntos
Clima , Tempo (Meteorologia) , Inundações , Modelos Lineares , Fatores de Risco
7.
Ann Neurol ; 83(1): 131-141, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29283442

RESUMO

OBJECTIVE: Myeloid cells, including macrophages and dendritic cells, are a prominent component of central nervous system (CNS) infiltrates during multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE). Although myeloid cells are generally thought to be proinflammatory, alternatively polarized subsets can serve noninflammatory and/or reparative functions. Here we investigate the heterogeneity and biological properties of myeloid cells during central nervous system autoimmunity. METHODS: Myeloid cell phenotypes in chronic active MS lesions were analyzed by immunohistochemistry. In addition, immune cells were isolated from the CNS during exacerbations and remissions of EAE and characterized by flow cytometric, genetic, and functional assays. RESULTS: Myeloid cells expressing inducible nitric oxide synthase (iNOS), indicative of a proinflammatory phenotype, were detected in the actively demyelinating rim of chronic active MS lesions, whereas macrophages expressing mannose receptor (CD206), a marker of alternatively polarized human myeloid cells, were enriched in the quiescent lesion core. During EAE, CNS-infiltrating myeloid cells, as well as microglia, shifted from expression of proinflammatory markers to expression of noninflammatory markers immediately prior to clinical remissions. Murine CNS myeloid cells expressing the alternative lineage marker arginase-1 (Arg1) were partially derived from iNOS+ precursors and were deficient in activating encephalitogenic T cells compared with their Arg1- counterparts. INTERPRETATION: These observations demonstrate the heterogeneity of CNS myeloid cells, their evolution during the course of autoimmune demyelinating disease, and their plasticity on the single cell level. Future therapeutic strategies for disease modification in individuals with MS may be focused on accelerating the transition of CNS myeloid cells from a proinflammatory to a noninflammatory phenotype. Ann Neurol 2018;83:131-141.


Assuntos
Doenças Autoimunes do Sistema Nervoso/patologia , Plasticidade Celular , Células Mieloides/patologia , Animais , Arginase/genética , Células da Medula Óssea/patologia , Quimera , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Humanos , Imuno-Histoquímica , Lectinas Tipo C/biossíntese , Lectinas Tipo C/genética , Receptor de Manose , Lectinas de Ligação a Manose/biossíntese , Lectinas de Ligação a Manose/genética , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Fenótipo , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética
8.
J Magn Reson Imaging ; 48(5): 1281-1287, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29517817

RESUMO

BACKGROUND: The pathological processes in the first weeks of multiple sclerosis (MS) lesion formation include myelin digestion that breaks chemical bonds in myelin lipid layers. This can increase lesion magnetic susceptibility, which is a potentially useful biomarker in MS patient management, but not yet investigated. PURPOSE: To understand and quantify the effects of myelin digestion on quantitative susceptibility mapping (QSM) of MS lesions. STUDY TYPE: Histological and QSM analyses on in vitro models of myelin breakdown and MS lesion formation in vivo. POPULATION/SPECIMENS: Acutely demyelinating white matter lesions from MS autopsy tissue were stained with the lipid dye oil red O. Myelin basic protein (MBP), a major membrane protein of myelin, was digested with trypsin. Purified human myelin was denatured with sodium dodecyl sulfate (SDS). QSM was performed on phantoms containing digestion products and untreated controls. In vivo QSM was performed on five MS patients with newly enhancing lesions, and then repeated within 2 weeks. FIELD STRENGTH/SEQUENCE: 3D T 2 * -weighted spoiled multiecho gradient echo scans performed at 3T. ASSESSMENT: Region of interest analyses were performed by a biochemist and a neuroradiologist to determine susceptibility changes on in vitro and in vivo QSM images. STATISTICAL TESTS: Not applicable. RESULTS: MBP degradation by trypsin increased the QSM measurement by an average of 112 ± 37 ppb, in excellent agreement with a theoretical estimate of 111 ppb. Degradation of human myelin by SDS increased the QSM measurement by 23 ppb. As MS lesions changed from gadolinium enhancing to nonenhancing over an average of 15.8 ± 3.7 days, their susceptibility increased by an average of 7.5 ± 6.3 ppb. DATA CONCLUSION: Myelin digestion in the early stages of MS lesion formation contributes to an increase in tissue susceptibility, detectable by QSM, as a lesion evolves from gadolinium enhancing to nonenhancing. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1281-1287.


Assuntos
Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina/química , Algoritmos , Animais , Autopsia , Biomarcadores/química , Bovinos , Humanos , Proteína Básica da Mielina/química , Imagens de Fantasmas , Tripsina/química , Substância Branca/diagnóstico por imagem
9.
Brain ; 140(2): 399-413, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007993

RESUMO

Astrocytes are key players in the pathology of multiple sclerosis and can assume beneficial and detrimental roles during lesion development. The triggers and timing of the different astroglial responses in acute lesions remain unclear. Astrocytes in acute multiple sclerosis lesions have been shown previously to contain myelin debris, although its significance has not been examined. We hypothesized that myelin phagocytosis by astrocytes is an early event during lesion formation and leads to astroglial immune responses. We examined multiple sclerosis lesions and other central nervous system pathologies with prominent myelin injury, namely, progressive multifocal leukoencephalopathy, metachromatic leukodystrophy and subacute infarct. In all conditions, we found that myelin debris was present in most astrocytes at sites of acute myelin breakdown, indicating that astroglial myelin phagocytosis is an early and prominent feature. Functionally, myelin debris was taken up by astrocytes through receptor-mediated endocytosis and resulted in astroglial NF-κB activation and secretion of chemokines. These in vitro results in rats were validated in human disease where myelin-positive hypertrophic astrocytes showed increased nuclear localization of NF-κB and elevated chemokine expression compared to myelin-negative, reactive astrocytes. Thus, our data suggest that myelin uptake is an early response of astrocytes in diseases with prominent myelin injury that results in recruitment of immune cells. This first line response of astrocytes to myelin injury may exert beneficial or detrimental effects on the lesion pathology, depending on the inflammatory context. Modulating this response might be of therapeutic relevance in multiple sclerosis and other demyelinating conditions.


Assuntos
Astrócitos/metabolismo , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Fagocitose/fisiologia , Adulto , Idoso , Animais , Animais Recém-Nascidos , Astrócitos/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Pré-Escolar , Cultura , Citocinas/metabolismo , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Feminino , Humanos , Hidrazonas/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Fatores de Tempo , Fator de Crescimento Transformador beta/farmacologia
10.
J Magn Reson Imaging ; 46(4): 951-971, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28295954

RESUMO

Quantitative susceptibility mapping (QSM) has enabled magnetic resonance imaging (MRI) of tissue magnetic susceptibility to advance from simple qualitative detection of hypointense blooming artifacts to precise quantitative measurement of spatial biodistributions. QSM technology may be regarded to be sufficiently developed and validated to warrant wide dissemination for clinical applications of imaging isotropic susceptibility, which is dominated by metals in tissue, including iron and calcium. These biometals are highly regulated as vital participants in normal cellular biochemistry, and their dysregulations are manifested in a variety of pathologic processes. Therefore, QSM can be used to assess important tissue functions and disease. To facilitate QSM clinical translation, this review aims to organize pertinent information for implementing a robust automated QSM technique in routine MRI practice and to summarize available knowledge on diseases for which QSM can be used to improve patient care. In brief, QSM can be generated with postprocessing whenever gradient echo MRI is performed. QSM can be useful for diseases that involve neurodegeneration, inflammation, hemorrhage, abnormal oxygen consumption, substantial alterations in highly paramagnetic cellular iron, bone mineralization, or pathologic calcification; and for all disorders in which MRI diagnosis or surveillance requires contrast agent injection. Clinicians may consider integrating QSM into their routine imaging practices by including gradient echo sequences in all relevant MRI protocols. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:951-971.


Assuntos
Artefatos , Meios de Contraste , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Metais , Humanos
11.
Int J Mol Sci ; 17(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26784172

RESUMO

Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS.


Assuntos
Encéfalo/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Humanos , Esclerose Múltipla/patologia
12.
Clin Immunol ; 161(1): 51-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26143623

RESUMO

Substantial effort has been made over the last six decades to identify biomarkers for multiple sclerosis that can improve disease diagnosis, predict disease progression, and improve clinical outcomes. However, to date, few of these findings have proven clinically useful. In this review, we address the current state of MS biomarker research. We start by discussing biomarkers currently in clinical use including Oligoclonal bands, MRI, and JC viral titers. We go on to discuss other potential biomarkers from MS serum and cerebrospinal fluid including Markers of neurodegeneration including neurofilament and GFAP, the monocyte macrophage marker CD163, the glial activation marker YKL-40, the B cell chemoattractant CXCL13, miRNA and mRNA, myelin reactive t cells, Kir4.1 antibodies, osteopontin, and microbiome associated lipopeptides. Finally, we discuss the current state of MS genetic studies and how genetics may offer simple, reliable testing for MS susceptibility and progression.


Assuntos
Biomarcadores/análise , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/imunologia , Anticorpos Antivirais/análise , Anticorpos Antivirais/imunologia , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imunoglobulina G/líquido cefalorraquidiano , Imunoglobulina G/imunologia , Vírus JC/imunologia , Imageamento por Ressonância Magnética , MicroRNAs/genética , Esclerose Múltipla/genética , Radiografia , Sensibilidade e Especificidade
13.
Magn Reson Med ; 74(2): 564-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25137340

RESUMO

PURPOSE: Within multiple sclerosis (MS) lesions iron is present in chronically activated microglia. Thus, iron detection with MRI might provide a biomarker for chronic inflammation within lesions. Here, we examine contributions of iron and myelin to magnetic susceptibility of lesions on quantitative susceptibility mapping (QSM). METHODS: Fixed MS brain tissue was assessed with MRI including gradient echo data, which was processed to generate field (phase), R2* and QSM. Five lesions were sectioned and evaluated by immunohistochemistry for presence of myelin, iron and microglia/macrophages. Two of the lesions had an elemental analysis for iron concentration mapping, and their phospholipid content was estimated from the difference in the iron and QSM data. RESULTS: Three of the five lesions had substantial iron deposition that was associated with microglia and positive susceptibility values. For the two lesions with elemental analysis, the QSM derived phospholipid content maps were consistent with myelin labeled histology. CONCLUSION: Positive susceptibility values with respect to water indicate the presence of iron in MS lesions, although both demyelination and iron deposition contribute to QSM.


Assuntos
Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Substância Branca/metabolismo , Substância Branca/patologia , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Immunol ; 191(3): 1043-54, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23797673

RESUMO

Macrophage migration inhibitory factor (MIF) is a multipotent cytokine that is associated with clinical worsening and relapses in multiple sclerosis (MS) patients. The mechanism through which MIF promotes MS progression remains undefined. In this study, we identify a critical role for MIF in regulating CNS effector mechanisms necessary for the development of inflammatory pathology in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Despite the ability to generate pathogenic myelin-specific immune responses peripherally, MIF-deficient mice have reduced EAE severity and exhibit less CNS inflammatory pathology, with a greater percentage of resting microglia and fewer infiltrating inflammatory macrophages. We demonstrate that MIF is essential for promoting microglial activation and production of the innate soluble mediators IL-1ß, IL-6, TNF-α, and inducible NO synthase. We propose a novel role for MIF in inducing microglial C/EBP-ß, a transcription factor shown to regulate myeloid cell function and play an important role in neuroinflammation. Intraspinal stereotaxic microinjection of MIF resulted in upregulation of inflammatory mediators in microglia, which was sufficient to restore EAE-mediated inflammatory pathology in MIF-deficient mice. To further implicate a role for MIF, we show that MIF is highly expressed in human active MS lesions. Thus, these results illustrate the ability of MIF to influence the CNS cellular and molecular inflammatory milieu during EAE and point to the therapeutic potential of targeting MIF in MS.


Assuntos
Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Microglia/metabolismo , Adulto , Idoso , Animais , Proteína beta Intensificadora de Ligação a CCAAT/biossíntese , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Humanos , Inflamação/imunologia , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Oxirredutases Intramoleculares/deficiência , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/deficiência , Fatores Inibidores da Migração de Macrófagos/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
15.
Radiology ; 271(1): 183-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24475808

RESUMO

PURPOSE: To assess multiple sclerosis (MS) lesions at various ages by using quantitative susceptibility mapping (QSM) and conventional magnetic resonance (MR) imaging. MATERIALS AND METHODS: Retrospectively selected were 32 clinically confirmed MS patients (nine men and 23 women; 39.3 years ± 10.9) who underwent two MR examinations (interval, 0.43 years ± 0.16) with three-dimensional gradient-echo sequence from August 2011 to August 2012. To estimate the ages of MS lesions, MR examinations performed 0.3-10.6 years before study examinations were studied. Hyperintensity on T2-weighted images was used to define MS lesions. QSM images were reconstructed from gradient-echo data. Susceptibility of MS lesions and temporal rates of change were obtained from QSM images. Lesion susceptibilities were analyzed by t test with intracluster correlation adjustment and Bonferroni correction in multiple comparisons. RESULTS: MR imaging of 32 patients depicted 598 MS lesions, of which 162 lesions (27.1%) in 23 patients were age measurable and six (1.0%) were only visible at QSM. The susceptibilities relative to normal-appearing white matter (NAWM) were 0.53 ppb ± 3.34 for acute enhanced lesions, 38.43 ppb ± 13.0 (positive; P < .01) for early to intermediately aged nonenhanced lesions, and 4.67 ppb ± 3.18 for chronic nonenhanced lesions. Temporal rates of susceptibility changes relative to cerebrospinal fluid were 12.49 ppb/month ± 3.15 for acute enhanced lesions, 1.27 ppb/month ± 2.31 for early to intermediately aged nonenhanced lesions, and -0.004 ppb/month ± 0 for chronic nonenhanced lesions. CONCLUSION: Magnetic susceptibility of MS lesions increased rapidly as it changed from enhanced to nonenhanced, it attained a high susceptibility value relative to NAWM during its initial few years (approximately 4 years), and it gradually dissipated back to susceptibility similar to that of NAWM as it aged, which may provide new insight into pathophysiologic features of MS lesions. Online supplemental material is available for this article.


Assuntos
Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Adulto , Meios de Contraste , Feminino , Gadolínio , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
17.
Front Neurosci ; 18: 1426700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966760

RESUMO

Molecular biomarkers require the reproducible capture of disease-associated changes and are ideally sensitive, specific and accessible with minimal invasiveness to patients. Exosomes are a subtype of extracellular vesicles that have gained attention as potential biomarkers. They are released by all cell types and carry molecular cargo that reflects the functional state of the cells of origin. These characteristics make them an attractive means of measuring disease-related processes within the central nervous system (CNS), as they cross the blood-brain barrier (BBB) and can be captured in peripheral blood. In this review, we discuss recent progress made toward identifying blood-based protein and RNA biomarkers of several neurodegenerative diseases from circulating, CNS cell-derived exosomes. Given the lack of standardized methodology for exosome isolation and characterization, we discuss the challenges of capturing and quantifying the molecular content of exosome populations from blood for translation to clinical use.

18.
Front Neurol ; 13: 854390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432156

RESUMO

The advent of disease modifying therapies (DMT) in the past two decades has been the cornerstone of successful clinical management of multiple sclerosis (MS). Despite the great strides made in reducing the relapse frequency and occurrence of new signal changes on neuroimaging in patients with relapsing remitting MS (RRMS) by approved DMT, it has been challenging to demonstrate their effectiveness in non-active secondary progressive MS (SPMS) and primary progressive MS (PPMS) disease phenotypes. The dichotomy of DMT effectiveness between RRMS and progressive MS informs on distinct pathogeneses of the different MS phenotypes. Conversely, factors that render patients with progressive MS resistant to therapy are not understood. Thus far, age has emerged as the main correlate of the transition from RRMS to SPMS. Whether it is aging and age-related factors or the underlying immune senescence that qualitatively alter immune responses as the disease transitions to SPMS, that diminish DMT effectiveness, or both, is currently not known. Here, we will discuss the role of immune senescence on different arms of the immune system, and how it may explain relative DMT resistance.

19.
J Neuroimaging ; 32(5): 852-859, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35668022

RESUMO

BACKGROUND AND PURPOSE: The objective is to demonstrate feasibility of separating magnetic sources in quantitative susceptibility mapping (QSM) by incorporating magnitude decay rates R 2 ∗ $R_2^{\rm{*}}$ in gradient echo (GRE) MRI. METHODS: Magnetic susceptibility source separation was developed using R 2 ∗ $R_2^{\rm{*}}$ and compared with a prior method using R 2 ' = R 2 ∗ - R 2 ${R^{\prime}_2} = R_2^* - {R_2}$ that required an additional sequence to measure the transverse relaxation rate R2 . Both susceptibility separation methods were compared in multiple sclerosis (MS) patients (n = 17). Susceptibility values of negative sources estimated with R 2 ∗ $R_2^{\rm{*}}$ -based source separation in a set of enhancing MS lesions (n = 44) were correlated against longitudinal myelin water fraction (MWF) changes. RESULTS: In in vivo data, linear regression of the estimated χ + ${\chi}^{+}$ and χ - ${\chi}^{-}$ susceptibility values between the R 2 ∗ $R_2^*$ - and the R 2 ' ${R^{\prime}_2}$ -based separation methods performed across 182 segmented lesions revealed correlation coefficient r = .96 and slope close .99. Correlation analysis in enhancing lesions revealed a significant positive association between the χ - ${\chi}^{-}$ increase at 1-year post-onset relative to 0 year and the MWF increase at 1 year relative to 0 year (ß = -0.144, 95% confidence interval: [-0.199, -0.1], p = .0008) and good agreement between R 2 ' ${R^{\prime}_2}$ and R 2 ∗ $R_2^*$ methods (r = .79, slope = .95). CONCLUSIONS: Separation of magnetic sources based solely on GRE complex data is feasible by combining magnitude decay rate modeling and phase-based QSM and χ - ${\chi}^{-}$ change may serve as a biomarker for myelin recovery or damage in acute MS lesions.


Assuntos
Imageamento por Ressonância Magnética , Esclerose Múltipla , Biomarcadores , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Água
20.
Tomography ; 8(3): 1544-1551, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35736875

RESUMO

Quantitative susceptibility mapping (QSM) facilitates mapping of the bulk magnetic susceptibility of tissue from the phase of complex gradient echo (GRE) MRI data. QSM phase processing combined with an R2* model of magnitude of multiecho gradient echo data (R2*QSM) allows separation of dia- and para-magnetic components (e.g., myelin and iron) that contribute constructively to R2* value but destructively to the QSM value of a voxel. This R2*QSM technique is validated against quantitative histology­optical density of myelin basic protein and Perls' iron histological stains of rim and core of 10 ex vivo multiple sclerosis lesions, as well as neighboring normal appearing white matter. We found that R2*QSM source maps are in good qualitative agreement with histology, e.g., showing increased iron concentration at the edge of the rim+ lesions and myelin loss in the lesions' core. Furthermore, our results indicate statistically significant correlation between paramagnetic and diamagnetic tissue components estimated with R2*QSM and optical densities of Perls' and MPB stains. These findings provide direct support for the use of R2*QSM magnetic source separation based solely on GRE complex data to characterize MS lesion composition.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA