Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Vet Res ; 55(1): 32, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493182

RESUMO

Outbreaks of West Nile virus (WNV) occur periodically, affecting both human and equine populations. There are no vaccines for humans, and those commercialised for horses do not have sufficient coverage. Specific antiviral treatments do not exist. Many drug discovery studies have been conducted, but since rodent or primate cell lines are normally used, results cannot always be transposed to horses. There is thus a need to develop relevant equine cellular models. Here, we used induced pluripotent stem cells to develop a new in vitro model of WNV-infected equine brain cells suitable for microplate assay, and assessed the cytotoxicity and antiviral activity of forty-one chemical compounds. We found that one nucleoside analog, 2'C-methylcytidine, blocked WNV infection in equine brain cells, whereas other compounds were either toxic or ineffective, despite some displaying anti-viral activity in human cell lines. We also revealed an unexpected proviral effect of statins in WNV-infected equine brain cells. Our results thus identify a potential lead for future drug development and underscore the importance of using a tissue- and species-relevant cellular model for assessing the activity of antiviral compounds.


Assuntos
Doenças dos Cavalos , Células-Tronco Pluripotentes Induzidas , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Cavalos , Humanos , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/epidemiologia , Encéfalo , Antivirais/farmacologia , Antivirais/uso terapêutico , Doenças dos Cavalos/tratamento farmacológico
2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338659

RESUMO

Vaccinia virus (Orthopoxvirus) F17 protein is a major virion structural phosphoprotein having a molecular weight of 11 kDa. Recently, it was shown that F17 synthesised in infected cells interacts with mTOR subunits to evade cell immunity and stimulate late viral protein synthesis. Several years back, we purified an 11 kDa protein that inhibited protein synthesis in reticulocyte lysate from virions, and that possesses all physico-chemical properties of F17 protein. To investigate this discrepancy, we used defective vaccinia virus particles devoid of the F17 protein (designated iF17- particles) to assess their ability to inhibit protein synthesis. To this aim, we purified iF17- particles from cells infected with a vaccinia virus mutant which expresses F17 only in the presence of IPTG. The SDS-PAGE protein profiles of iF17- particles or derived particles, obtained by solubilisation of the viral membrane, were similar to that of infectious iF17 particles. As expected, the profiles of full iF17- particles and those lacking the viral membrane were missing the 11 kDa F17 band. The iF17- particles did attach to cells and injected their viral DNA into the cytoplasm. Co-infection of the non-permissive BSC40 cells with a modified vaccinia Ankara (MVA) virus, expressing an mCherry protein, and iF17- particles, induced a strong mCherry fluorescence. Altogether, these experiments confirmed that the iF17- particles can inject their content into cells. We measured the rate of protein synthesis as a function of the multiplicity of infection (MOI), in the presence of puromycin as a label. We showed that iF17- particles did not inhibit protein synthesis at high MOI, by contrast to the infectious iF17 mutant. Furthermore, the measured efficiency to inhibit protein synthesis by the iF17 mutant virus generated in the presence of IPTG, was threefold to eightfold lower than that of the wild-type WR virus. The iF17 mutant contained about threefold less F17 protein than wild-type WR. Altogether these results strongly suggest that virion-associated F17 protein is essential to mediate a stoichiometric inhibition of protein synthesis, in contrast to the late synthesised F17. It is possible that this discrepancy is due to different phosphorylation states of the free and virion-associated F17 protein.


Assuntos
Vaccinia virus , Vacínia , Humanos , Vaccinia virus/genética , Vacínia/genética , Isopropiltiogalactosídeo , Linhagem Celular , Fosfoproteínas , Vírion/genética
3.
BMC Genomics ; 19(1): 404, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843609

RESUMO

BACKGROUND: Spermatozoa have a remarkable epigenome in line with their degree of specialization, their unique nature and different requirements for successful fertilization. Accordingly, perturbations in the establishment of DNA methylation patterns during male germ cell differentiation have been associated with infertility in several species. While bull semen is widely used in artificial insemination, the literature describing DNA methylation in bull spermatozoa is still scarce. The purpose of this study was therefore to characterize the bull sperm methylome relative to both bovine somatic cells and the sperm of other mammals through a multiscale analysis. RESULTS: The quantification of DNA methylation at CCGG sites using luminometric methylation assay (LUMA) highlighted the undermethylation of bull sperm compared to the sperm of rams, stallions, mice, goats and men. Total blood cells displayed a similarly high level of methylation in bulls and rams, suggesting that undermethylation of the bovine genome was specific to sperm. Annotation of CCGG sites in different species revealed no striking bias in the distribution of genome features targeted by LUMA that could explain undermethylation of bull sperm. To map DNA methylation at a genome-wide scale, bull sperm was compared with bovine liver, fibroblasts and monocytes using reduced representation bisulfite sequencing (RRBS) and immunoprecipitation of methylated DNA followed by microarray hybridization (MeDIP-chip). These two methods exhibited differences in terms of genome coverage, and consistently, two independent sets of sequences differentially methylated in sperm and somatic cells were identified for RRBS and MeDIP-chip. Remarkably, in the two sets most of the differentially methylated sequences were hypomethylated in sperm. In agreement with previous studies in other species, the sequences that were specifically hypomethylated in bull sperm targeted processes relevant to the germline differentiation program (piRNA metabolism, meiosis, spermatogenesis) and sperm functions (cell adhesion, fertilization), as well as satellites and rDNA repeats. CONCLUSIONS: These results highlight the undermethylation of bull spermatozoa when compared with both bovine somatic cells and the sperm of other mammals, and raise questions regarding the dynamics of DNA methylation in bovine male germline. Whether sperm undermethylation has potential interactions with structural variation in the cattle genome may deserve further attention.


Assuntos
Metilação de DNA , Genômica , Espermatozoides/metabolismo , Animais , Bovinos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Especificidade da Espécie
4.
Microb Cell Fact ; 16(1): 37, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245812

RESUMO

BACKGROUND: Cellobiose dehydrogenase (CDH) is an extracellular enzyme produced by lignocellulolytic fungi. cdh gene expression is high in cellulose containing media, but relatively low CDH concentrations are found in the supernatant of fungal cultures due to strong binding to cellulose. Therefore, heterologous expression of CDH in Pichia pastoris was employed in the last 15 years, but the obtained enzymes were over glycosylated and had a reduced specific activity. RESULTS: We compare the well-established CDH expression host P. pastoris with the less frequently used hosts Escherichia coli, Aspergillus niger, and Trichoderma reesei. The study evaluates the produced quantity and protein homogeneity of Corynascus thermophilus CDH in the culture supernatants, the purification, and finally compares the enzymes in regard to cofactor loading, glycosylation, catalytic constants and thermostability. CONCLUSIONS: Whereas E. coli could only express the catalytic dehydrogenase domain of CDH, all eukaryotic hosts could express full length CDH including the cytochrome domain. The CDH produced by T. reesei was most similar to the CDH originally isolated from the fungus C. thermophilus in regard to glycosylation, cofactor loading and catalytic constants. Under the tested experimental conditions the fungal expression hosts produce CDH of superior quality and uniformity compared to P. pastoris.


Assuntos
Aspergillus niger/genética , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Escherichia coli/genética , Expressão Gênica , Trichoderma/genética , Aspergillus niger/enzimologia , Desidrogenases de Carboidrato/isolamento & purificação , Catálise , Meios de Cultura/química , Estabilidade Enzimática , Escherichia coli/enzimologia , Glicosilação , Cinética , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/metabolismo , Sordariales/enzimologia , Temperatura , Trichoderma/enzimologia
5.
Appl Environ Microbiol ; 82(16): 4867-75, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27260365

RESUMO

UNLABELLED: The genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde. IMPORTANCE: This study addresses the poorly understood role of how fungal peroxidases obtain an in situ supply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2 in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these enzymes utilize fungal metabolites as the substrates. Two glyoxal oxidases have been isolated and characterized to date, and the differentiation of the substrate specificity of the two enzymes produced by Pycnoporus cinnabarinus illustrates the alternative mechanisms existing in a single fungus, together with the utilization of these enzymes to prepare platform chemicals for industry.


Assuntos
Oxirredutases do Álcool/genética , Proteínas Fúngicas/genética , Pycnoporus/enzimologia , Pycnoporus/genética , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Aspergillus niger/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Organismos Geneticamente Modificados/metabolismo , Oxirredução , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
6.
Appl Environ Microbiol ; 82(8): 2411-2423, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873317

RESUMO

Auxiliary activities family 3 subfamily 2 (AA3_2) from the CAZy database comprises various functions related to ligninolytic enzymes, such as fungal aryl alcohol oxidases (AAO) and glucose oxidases, both of which are flavoenzymes. The recent study of the Pycnoporus cinnabarinus CIRM BRFM 137 genome combined with its secretome revealed that four AA3_2 enzymes are secreted during biomass degradation. One of these AA3_2 enzymes, scf184803.g17, has recently been produced heterologously in Aspergillus niger Based on the enzyme's activity and specificity, it was assigned to the glucose dehydrogenases (PcinnabarinusGDH [PcGDH]). Here, we analyze the distribution of the other three AA3_2 enzymes (scf185002.g8, scf184611.g7, and scf184746.g13) to assess their putative functions. These proteins showed the highest homology with aryl alcohol oxidase from Pleurotus eryngii Biochemical characterization demonstrated that they were also flavoenzymes harboring flavin adenine dinucleotide (FAD) as a cofactor and able to oxidize a wide variety of phenolic and nonphenolic aryl alcohols and one aliphatic polyunsaturated primary alcohol. Though presenting homology with fungal AAOs, these enzymes exhibited greater efficiency in reducing electron acceptors (quinones and one artificial acceptor) than molecular oxygen and so were defined as aryl-alcohol:quinone oxidoreductases (AAQOs) with two enzymes possessing residual oxidase activity (PcAAQO2 and PcAAQO3). Structural comparison of PcAAQO homology models with P. eryngii AAO demonstrated a wider substrate access channel connecting the active-site cavity to the solvent, explaining the absence of activity with molecular oxygen. Finally, the ability of PcAAQOs to reduce radical intermediates generated by laccase from P. cinnabarinus was demonstrated, shedding light on the ligninolytic system of this fungus.


Assuntos
Oxirredutases do Álcool/metabolismo , Lignina/metabolismo , Pycnoporus/enzimologia , Quinonas/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Biomassa , Biotransformação , Coenzimas/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/química , Flavoproteínas/genética , Flavoproteínas/metabolismo , Modelos Moleculares , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
BMC Genomics ; 15: 486, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24942338

RESUMO

BACKGROUND: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology. RESULTS: The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases. CONCLUSIONS: With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.


Assuntos
Lignina/metabolismo , Pycnoporus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Genoma Fúngico , Glicosilação , Anotação de Sequência Molecular , Peroxidases/genética , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteoma/metabolismo , Pycnoporus/enzimologia , Análise de Sequência de DNA , Madeira/microbiologia
8.
Appl Microbiol Biotechnol ; 98(24): 10105-18, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24965558

RESUMO

Data on glucose dehydrogenases (GDHs) are scarce and availability of these enzymes for application purposes is limited. This paper describes a new GDH from the fungus Pycnoporus cinnabarinus CIRM BRFM 137 that is the first reported GDH from a white-rot fungus belonging to the Basidiomycota. The enzyme was recombinantly produced in Aspergillus niger, a well-known fungal host producing an array of homologous or heterologous enzymes for industrial applications. The full-length gene that encodes GDH from P. cinnabarinus (PcGDH) consists of 2,425 bp and codes for a deduced protein of 620 amino acids with a calculated molecular mass of 62.5 kDa. The corresponding complementary DNA was cloned and placed under the control of the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. The signal peptide of the glucoamylase prepro sequence of A. niger was used to target PcGDH secretion into the culture medium, achieving a yield of 640 mg L(-1), which is tenfold higher than any other reported value. The recombinant PcGDH was purified twofold to homogeneity in a one-step procedure with a 41 % recovery using a Ni Sepharose column. The identity of the recombinant protein was further confirmed by immunodetection using western blot analysis and N-terminal sequencing. The molecular mass of the native PcGDH was 130 kDa, suggesting a homodimeric form. Optimal pH and temperature were found to be similar (5.5 and 60 °C, respectively) to those determined for the previously characterized GDH, i.e., from Glomerella cingulata. However PcGDH exhibits a lower catalytic efficiency of 67 M(-1) s(-1) toward glucose. This substrate is by far the preferred substrate, which constitutes an advantage over other sugar oxidases in the case of blood glucose monitoring. The substrate-binding domain of PcGDH turns out to be conserved as compared to other glucose-methanol-choline (GMCs) oxidoreductases. In addition, the ability of PcGDH to reduce oxidized quinones or radical intermediates was clearly demonstrated, which raises prospects for applying this enzyme to detoxify toxic compounds formed during the degradation of lignin.


Assuntos
Fenômenos Químicos , Glucose 1-Desidrogenase/isolamento & purificação , Glucose 1-Desidrogenase/metabolismo , Pycnoporus/enzimologia , Sequência de Aminoácidos , Aspergillus niger/genética , Aspergillus niger/metabolismo , Cromatografia de Afinidade , DNA Fúngico/química , DNA Fúngico/genética , Estabilidade Enzimática , Expressão Gênica , Glucose/metabolismo , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Oxirredução , Multimerização Proteica , Quinonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade por Substrato , Temperatura
9.
Appl Microbiol Biotechnol ; 98(11): 4949-61, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24463760

RESUMO

Since the first report on a laccase, there has been a notable development in the interest towards this class of enzymes, highlighted from the number of scientific papers and patents about them. At the same time, interest in exploiting laccases-mainly high redox potential-for various functions has been growing exponentially over the last 10 years. Despite decades of work, the molecular determinants of the redox potential are far to be fully understood. For this reason, interest in tuning laccase redox potential to provide more efficient catalysts has been growing since the last years. The work herein described takes advantage of the filamentous fungus Aspergillus niger as host for the heterologous production of the high redox potential laccase POXA1b from Pleurotus ostreatus and of one of its in vitro selected variants (1H6C). The system herein developed allowed to obtain a production level of 35,000 U/L (583.3 µkat/L) for POXA1b and 60,000 U/L (1,000 µkat/L) for 1H6C, corresponding to 13 and 20 mg/L for POXA1b and 1H6C, respectively. The characterised proteins exhibit very similar characteristics, with some exceptions regarding catalytic behaviour, stability and spectro-electrochemical properties. Remarkably, the 1H6C variant shows a higher redox potential with respect to POXA1b. Furthermore, the spectro-electrochemical results obtained for 1H6C make it tempting to claim that we spectro-electrochemically determined the redox potential of the 1H6C T2 site, which has not been studied in any detail by spectro-electrochemistry yet.


Assuntos
Lacase/genética , Lacase/metabolismo , Mutação , Pleurotus/enzimologia , Aspergillus niger/genética , Aspergillus niger/metabolismo , Técnicas Eletroquímicas , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Lacase/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredução , Pleurotus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise Espectral , Temperatura
10.
J Immunol ; 184(7): 3734-42, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20207992

RESUMO

In this study, we have mapped the 3' H chain V region (V(H)) genes and those in the H chain diversity, H chain joining, and 5' portion of the H chain constant locus. We show that swine possess only two functional H chain diversity segments and only one functional H chain joining segment. These data help to explain more than a decade of observations on the preimmune repertoire of this species and reveal the vulnerability of swine to natural or designed mutational events. The results are consistent with earlier studies on the region containing Enh, Cmu, and Cdelta while revealing that the ancestral IgG3 is the most 5' Cgamma gene. We also observed a recent duplication ( approximately 1.6 million years ago) in the V(H) locus that contains six of the seven V(H) genes that comprise 75% of the preimmune repertoire. Because there are no known transfers of immune regulators or Ags that cross the placenta as in mice and humans, fetal V(H) usage must be intrinsically regulated. Therefore, we quantified V(H) usage in fetal piglets and demonstrated that usage is independent of the position of V(H) genes in the genome; the most 3' functional V(H) gene (IGHV2) is rarely used, whereas certain upstream genes (IGHV14 and IGHV15) are predominately used early in fetal liver but seldom thereafter. Similar to previous studies, three V(H) genes account for 40% of the repertoire and six for approximately 70%. This limited combinatorial diversity of the porcine V(H) repertoire further emphasizes the dependence on CDR3 diversity for generating the preimmune Ab repertoire of this species.


Assuntos
Genes de Cadeia Pesada de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Suínos/genética , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Feto , Humanos , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Suínos/imunologia
11.
Viruses ; 13(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34835061

RESUMO

Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, Flavivirus genus, is responsible for neurological symptoms that may cause permanent disability or death. With an incidence on the rise, it is the major arbovirus affecting humans in Central/Northern Europe and North-Eastern Asia. Neuronal death is a critical feature of TBEV infection, yet little is known about the type of death and the molecular mechanisms involved. In this study, we used a recently established pathological model of TBEV infection based on human neuronal/glial cells differentiated from fetal neural progenitors and transcriptomic approaches to tackle this question. We confirmed the occurrence of apoptotic death in these cultures and further showed that genes involved in pyroptotic death were up-regulated, suggesting that this type of death also occurs in TBEV-infected human brain cells. On the contrary, no up-regulation of major autophagic genes was found. Furthermore, we demonstrated an up-regulation of a cluster of genes belonging to the extrinsic apoptotic pathway and revealed the cellular types expressing them. Our results suggest that neuronal death occurs by multiple mechanisms in TBEV-infected human neuronal/glial cells, thus providing a first insight into the molecular pathways that may be involved in neuronal death when the human brain is infected by TBEV.


Assuntos
Apoptose , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Neuroglia/virologia , Neurônios/virologia , Piroptose , Apoptose/genética , Astrócitos/metabolismo , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Piroptose/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Transcriptoma
12.
Biotechnol Biofuels ; 14(1): 161, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294139

RESUMO

BACKGROUND: Fungal glucose dehydrogenases (GDHs) are FAD-dependent enzymes belonging to the glucose-methanol-choline oxidoreductase superfamily. These enzymes are classified in the "Auxiliary Activity" family 3 (AA3) of the Carbohydrate-Active enZymes database, and more specifically in subfamily AA3_2, that also includes the closely related flavoenzymes aryl-alcohol oxidase and glucose 1-oxidase. Based on sequence similarity to known fungal GDHs, an AA3_2 enzyme active on glucose was identified in the genome of Pycnoporus cinnabarinus, a model Basidiomycete able to completely degrade lignin. RESULTS: In our work, substrate screening and functional characterization showed an unexpected preferential activity of this enzyme toward oligosaccharides containing a ß(1→3) glycosidic bond, with the highest efficiency observed for the disaccharide laminaribiose. Despite its sequence similarity to GDHs, we defined a novel enzymatic activity, namely oligosaccharide dehydrogenase (ODH), for this enzyme. The crystallographic structures of ODH in the sugar-free form and in complex with glucose and laminaribiose unveiled a peculiar saccharide recognition mechanism which is not shared with previously characterized AA3 oxidoreductases and accounts for ODH preferential activity toward oligosaccharides. The sugar molecules in the active site of ODH are mainly stabilized through CH-π interactions with aromatic residues rather than through hydrogen bonds with highly conserved residues, as observed instead for the fungal glucose dehydrogenases and oxidases characterized to date. Finally, three sugar-binding sites were identified on ODH external surface, which were not previously observed and might be of importance in the physiological scenario. CONCLUSIONS: Structure-function analysis of ODH is consistent with its role as an auxiliary enzyme in lignocellulose degradation and unveils yet another enzymatic function within the AA3 family of the Carbohydrate-Active enZymes database. Our findings allow deciphering the molecular determinants of substrate binding and provide insight into the physiological role of ODH, opening new perspectives to exploit biodiversity for lignocellulose transformation into fuels and chemicals.

13.
DNA Res ; 27(2)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531032

RESUMO

White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.


Assuntos
Desidrogenases de Carboidrato/genética , Proteínas Fúngicas/genética , Lignina/genética , Pycnoporus/enzimologia , Desidrogenases de Carboidrato/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Lignina/metabolismo , Filogenia , Pycnoporus/classificação , Pycnoporus/genética , Madeira/metabolismo , Madeira/microbiologia
14.
PLoS One ; 14(8): e0220244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31374089

RESUMO

Cattle with subclinical endometritis (SCE) are sub-fertile and diagnosing subclinical uterine disease remains a challenge. The hypothesis for this study was that endometrial inflammation is reflected in mRNA expression patterns of peripheral blood leucocytes. Transcriptome profiles were evaluated in healthy cows and in cows with SCE using circulating white blood cells (WBC) and endometrial biopsy samples collected from the same animals at 45-55 days postpartum. Bioinformatic analyses of microarray-based transcriptional data identified gene profiles associated with distinct biological functions in circulating WBC and endometrium. In circulating WBC, SCE promotes a pro-inflammatory environment, whereas functions related to tissue remodeling are also affected in the endometrium. Nineteen differentially expressed genes associated with SCE were common to both circulating WBC and the endometrium. Among these genes, transcript abundance of immune factors C3, C2, LTF, PF4 and TRAPPC13 were up-regulated in SCE cows at 45-55 days postpartum. Moreover, mRNA expression of C3, CXCL8, LTF, TLR2 and TRAPPC13 was temporally regulated during the postpartum period in circulating WBC of healthy cows compared with SCE cows. This observation might indicate an advantageous modulation of the immune system in healthy animals. The transcript abundance of these genes represents a potential source of indicators for postpartum uterine health.


Assuntos
Doenças dos Bovinos/sangue , Doenças dos Bovinos/genética , Indústria de Laticínios , Endometrite/veterinária , Endométrio/metabolismo , Transcriptoma , Animais , Bovinos , Endometrite/sangue , Endometrite/genética , Feminino , Leucócitos/metabolismo , RNA Mensageiro/sangue , RNA Mensageiro/genética
15.
BMC Genomics ; 9: 46, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-18226214

RESUMO

BACKGROUND: Gene expression profiling has become a tool of choice to study pathological or developmental questions but in most cases the material is scarce and requires sample amplification. Two main procedures have been used: in vitro transcription (IVT) and polymerase chain reaction (PCR), the former known as linear and the latter as exponential. Previous reports identified enzymatic pitfalls in PCR and IVT protocols; however the possible differences between the sequences affected by these amplification defaults were only rarely explored. RESULTS: Screening a bovine cDNA array dedicated to embryonic stages with embryonic (n = 3) and somatic tissues (n = 2), we proceeded to moderate amplifications starting from 1 mug of total RNA (global PCR or IVT one round). Whatever the tissue, 16% of the probes were involved in deviating gene expressions due to amplification defaults. These distortions were likely due to the molecular features of the affected sequences (position within a gene, GC content, hairpin number) but also to the relative abundance of these transcripts within the tissues. These deviating genes mainly encoded housekeeping genes from physiological or cellular processes (70%) and constituted 2 subsets which did not overlap (molecular features, signal intensities, gene ID). However, the differential expressions identified between embryonic stages were both reliable (minor intersect with biased expressions) and relevant (biologically validated). In addition, the relative expression levels of those genes were biologically similar between amplified and unamplified samples. CONCLUSION: Conversely to the most recent reports which challenged the use of intense amplification procedures on minute amounts of RNA, we chose moderate PCR and IVT amplifications for our gene profiling study. Conclusively, it appeared that systematic biases arose even with moderate amplification procedures, independently of (i) the sample used: brain, ovary or embryos, (ii) the enzymatic properties initially inferred (exponential or linear) and (iii) the preliminary optimization of the protocols. Moreover the use of an in-house developed array, small-sized but well suited to the tissues we worked with, was of real interest for the search of differential expressions.


Assuntos
Perfilação da Expressão Gênica/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Bovinos , Feminino , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase/métodos
16.
Fungal Genet Biol ; 45(5): 638-45, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18308593

RESUMO

The breakdown of lignin by fungi is a key step during carbon recycling in terrestrial ecosystems. This process is of great interest for green and white biotechnological applications. Given the importance of these enzymatic processes, we have classified the enzymes potentially involved in lignin catabolism into sequence-based families and integrated them in a newly developed database, designated Fungal Oxidative Lignin enzymes (FOLy). Families were defined after sequence similarity searches starting from protein sequences and validated by the convergence of results with biochemical experiments reported in the literature. The resulting database was applied as a tool for the functional annotation of genomes from different fungi, namely (i) the Basidiomycota Coprinopsis cinerea, Phanerochaete chrysosporium and Ustilago maydis and (ii) the Ascomycota Aspergillus nidulans and Trichoderma reesei. Genomic comparison of the oxidoreductases of these fungi revealed significant differences in the putative enzyme arsenals. Two Ascomycota fungal genomes were annotated and new candidate genes were identified that could be useful for lignin degradation and (or) melanin synthesis, and their function investigated experimentally. This database efforts aims at providing the means to get new insights for the understanding and biotechnological exploitation of the lignin degradation. A WWW server giving access to the routinely updated FOLy classifications of enzymes potentially involved in lignin degradation can be found at http://foly.esil.univ-mrs.fr.


Assuntos
Bases de Dados de Proteínas , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Lignina/metabolismo , Oxirredutases/classificação , Oxirredutases/metabolismo , Proteínas Fúngicas/genética , Oxirredutases/genética , Homologia de Sequência de Aminoácidos
17.
Br J Nutr ; 100(5): 953-67, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18439330

RESUMO

Reducing the reliance on fishery by-products as amino acid and fatty acid sources in feeds for farmed fish is a major objective today. We evaluated the effect of dietary fish oil or dietary fishmeal replacement by vegetable oils and plant proteins respectively through analysis of hepatic transcriptomes in rainbow trout (Oncorhynchus mykiss). Fish were fed right from first feeding with diets based on plant by-products before being killed. We analysed the hepatic gene profile using trout cDNA microarrays (9K). Our data showed that seventy-one and seventy-five genes were affected after fish oil and fishmeal replacement respectively. The major part of modified gene expression coding for proteins of the metabolic pathways was as follows: (i) a lower level of expression for genes of energy metabolism found in fish after fishmeal and fish oil replacement; (ii) a lower level of gene expression for fatty acid metabolism (biosynthesis) in fish fed with vegetable oils; (iii) a differential expression of actors of detoxification metabolism in trout fed with vegetable oils; (iv) a lower level of expression of genes involved in protein metabolism in fish fed with plant proteins. Overall, our data suggest that dietary fish oil replacement is linked to a decreased capacity of fatty acid biosynthesis (fatty acid synthase) and variation of detoxification metabolism (cytochrome P450s) whereas dietary fishmeal replacement may depress protein metabolism in the liver as reflected by glutamine synthetase.


Assuntos
Óleos de Peixe/administração & dosagem , Perfilação da Expressão Gênica , Fígado/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oncorhynchus mykiss/metabolismo , Óleos de Plantas/administração & dosagem , Ração Animal , Animais , Pesqueiros , Oncorhynchus mykiss/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
18.
Brain Res ; 1142: 217-22, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17303092

RESUMO

This study aimed at identifying genes that could mark scrapie infection in the central nervous system of sheep. We used the subtractive suppressive hybridization (SSH) technique on brain samples from sheep healthy or clinically affected by scrapie. Following subtraction, several discrete differential bands appeared between the two reciprocally subtracted samples. These bands were cloned and sequenced, allowing identifying the genes COX1, CHN1, PPP2CA, LRFN5, CAMK2A and RABEPK. Two of the genes identified, CHN1 and RABEPK, appear to locate inside a QTL region known to modulate prion disease incubation time in mice, and LRFN5 maps inside a QTL region identified in sheep. Furthermore, CHN1 and RABEKP showed new unreported differential splicing.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Perfilação da Expressão Gênica , Scrapie/genética , Animais , Quimerina 1/genética , Quimerina 1/metabolismo , Humanos , Locos de Características Quantitativas , Scrapie/metabolismo , Alinhamento de Sequência , Ovinos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
19.
Gene ; 370: 104-12, 2006 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-16483732

RESUMO

Whey Acidic Protein (WAP) has been identified in the milk of only a few species, including mouse, rat, rabbit, camel, pig, tammar wallaby, brushtail possum, echidna and platypus. Despite intensive studies, it has not yet been found in the milk of Ruminants. We have isolated and characterized genomic WAP clones from ewe, goat and cow, identified their chromosomal localization and examined the expression of the endogenous WAP sequence in the mammary glands of all three species. The WAP sequences were localized on chromosome 4 (4q26) as expected from comparative mapping data. The three ruminant WAP sequences reveal the same deletion of a nucleotide at the end of the first exon when compared with the pig sequence. Due to this frameshift mutation, the putative proteins encoded by these sequences do not harbor the features of a usual WAP protein with two four-disulfide core domains. Moreover, RT-PCR experiments have shown that these sequences are not transcribed and are, thus, pseudogenes. This loss of functionality of the gene in Ruminants raises the question of the biological role of the WAP. Some putative roles previously suggested for WAP are discussed.


Assuntos
Mutação da Fase de Leitura , Regulação da Expressão Gênica/fisiologia , Proteínas do Leite/genética , Pseudogenes/genética , Ruminantes/genética , Deleção de Sequência , Animais , Sequência de Bases , Cromossomos/genética , Éxons/genética , Feminino , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/biossíntese , Dados de Sequência Molecular , Ruminantes/metabolismo , Homologia de Sequência do Ácido Nucleico
20.
BMC Genomics ; 6: 133, 2005 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16176575

RESUMO

BACKGROUND: The gene(s) encoding the ETEC F4ab/ac receptors, involved in neonatal diarrhoea in pigs (a disease not yet described in humans), is located close to the TF locus on Sscr13. In order to reveal and characterize possible candidate genes encoding these receptors, a porcine physical map of the TF region is indispensable. RESULTS: A contig of 33 BAC clones, covering approximately 1.35 Mb surrounding the TF locus on Sscr13q31-q32, was built by chromosome walking. A total of 22,552 bp from the BAC contig were sequenced and compared with database sequences to identify genes, ESTs and repeat sequences, and to anchor the contig to the syntenic region of the human genome sequence (Hsap3q21-q22). The contig was further annotated based on this human/porcine comparative map, and was also anchored to the Sanger porcine framework map and the integrated map of Sscr13 by RH mapping. CONCLUSION: The annotated contig, containing 10 genes and 2 ESTs, showed a complete conservation of linkage (gene order and orientation) with the human genome sequence, based on 46 anchor points. This underlines the importance of the human/porcine comparative map for the identification of porcine genes associated with genetic defects and economically important traits, and for assembly of the porcine genome sequence.


Assuntos
Cromossomos Artificiais Bacterianos , Cromossomos Humanos Par 3 , Mapeamento de Sequências Contíguas/métodos , Animais , Sequência de Bases , Mapeamento Cromossômico , Passeio de Cromossomo , Primers do DNA/química , Etiquetas de Sequências Expressas , Ligação Genética , Genoma Humano , Humanos , Hibridização de Ácido Nucleico , Mapeamento Físico do Cromossomo , Mapeamento de Híbridos Radioativos , Especificidade da Espécie , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA