Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Phys Chem A ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013157

RESUMO

The sulfonylurea herbicide family has been extensively studied using computational techniques. The most stable conformer structures of the 34 molecules analyzed in gaseous, aqueous, and octanol phases have been determined. The study employed CREST conformational search methods along with the CENSO script to explore all possible conformational structures. Additional evaluations conducted at the B3LYP-D3/6-311+G(d,p) level have enabled the identification of intramolecular stability patterns across the various compounds. It has been discovered that stability is primarily determined by two factors: intramolecular hydrogen bonding involving an NH group adjacent to the sulfonyl group with either N donors or the nearby carbonyl group and potential π-π interactions between the aromatic rings of the molecules. These have been characterized through QTAIM and NCI population analyses. Furthermore, with the goal of developing predictive models for the physicochemical properties of pesticides that include the sulfonylurea family, a statistical analysis among the different properties of the studied molecules has been conducted. Significant correlations have been found between various properties, predicting a promising future for the prediction of characteristics that could assist laboratories in selecting among different pesticides.

2.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892183

RESUMO

Baccharis macraei Hook. & Arn (Asteraceae), commonly known as Vautro, is found in the coastal areas of central-southern Chile, including the industrial zone of Quintero-Puchuncaví, known for the contamination of its soils with heavy metals, which together with other factors generate abiotic stress in plant species, against which they present defensive mechanisms. For this reason, the objective was to evaluate the effect of abiotic stress generated by the proximity of B. macraei to the industrial complex by assessing the physiological and metabolic states reported by the extracts and compounds isolated from the species, as well as the photosynthetic capacity, metal content and production, and antioxidant activity and cytotoxicity against tumorigenic cell lines of the phytoconstituents. To this end, B. macraei was collected at two different distances from the industrial complex, observing that the closer the species is, the greater the concentration of copper in the soil, generating a decrease in the rate of electron transport in situ, but an increase in antioxidant activity with low cytotoxicity. This activity could be due to the presence of flavonoids such as Hispidulin, Cirsimaritina, and Isokaempferida, as well as monoterpenes, oxygenated and non-oxygenated sesquiterpenes identified in this study.


Assuntos
Antioxidantes , Baccharis , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Baccharis/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Chile , Fotossíntese/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação
3.
Photochem Photobiol Sci ; 22(9): 2231-2245, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37329434

RESUMO

Photosynthesis, growth and biochemical composition of the biomass of the freshwater microalga Chlamydopodium fusiforme cultures outdoors in a thin-layer cascade were investigated. Gross oxygen production measured off-line in samples taken from the outdoor cultures was correlated with the electron transport rate estimated from chlorophyll a fluorescence measurements. According to photosynthesis measurements, a mean of 38.9 ± 10.3 mol of photons were required to release one mole of O2, which is 4.86 times higher than the theoretical value (8 photons per 1 O2). In contrast, according to the fluorescence measurements, a mean of 11.7 ± 0.74 mol of photons were required to release 1 mol of O2. These findings indicate that fluorescence-based photosynthesis rates may not be fully replace oxygen measurements to evaluate the performance of an outdoor culture. Daily gross biomass productivity was 0.3 g DW L-1 day-1 consistently for 4 days. Biomass productivity was strongly affected by the suboptimal concentration at which the culture was operated and by the respiration rate, as the substantial volume of culture was kept in the dark (about 45% of the total volume). As the cells were exposed to excessive light, the photosynthetic activity was mainly directed to the synthesis of carbohydrates in the biomass. In the morning, carbohydrate content decreased because of the dark respiration. Per contra, protein content in the biomass was lower at the end of the day and higher in the morning due to carbohydrate consumption by respiration. The data gathered in these trials are important for the future exploitation of Chlamydopodium fusiforme as a potential novel species in the field of microalgae for the production of bio-based compounds.


Assuntos
Clorófitas , Microalgas , Clorofila A , Fotossíntese , Clorófitas/metabolismo , Carboidratos , Oxigênio/metabolismo , Biomassa , Microalgas/metabolismo
4.
Molecules ; 28(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894517

RESUMO

Senecio fistulosus, an endemic plant in Chile, is highly regarded for its medicinal properties and is popular in alternative medicine. It thrives even in polluted areas, like Puchuncaví Valley, Chile. Therefore, the study aimed to assess the impact of industrial pollution in Puchuncaví Valley, Chile, on the phytoconstituent content, as well as the antioxidant and cytotoxic activities, of S. fistulosus. Phenols, flavonoids, and anthraquinones content were measured, alongside the assessment of antioxidant activities. Additionally, a GC-MS analysis was conducted to profile the phytoconstituents, while the cytotoxic potential was evaluated in HT-29 and MCF-7 and cell line non-tumorigenic MCF-10. The Wild sample exhibited a greater concentration of phytoconstituents (0 to 169.48 mg·L-1) compared to the Commercial control (0 to 95.38 mg·L-1), directly correlating with its antioxidant activity. While the Wild species showed cytotoxic activity, the Commercial control demonstrated cytotoxic effects on MCF-10 and MCF-7. Noteworthy compounds identified were hexadecanoic acid (12.76 to 19.57% relative area) and (Z,Z,Z)-9,12,15-octadecatrienoic acid (18.36% relative area), with anticancer properties. In conclusion, the abiotic stress experienced by S. fistulosus led to higher phytoconstituent content and improved antioxidant activity when contrasted with the Commercial control. The Commercial species showed increased cytotoxic activity against both tumorigenic and non-tumorigenic cell lines.


Assuntos
Antineoplásicos , Senécio , Humanos , Antioxidantes/farmacologia , Antioxidantes/análise , Linhagem Celular Tumoral , Células HT29 , Extratos Vegetais/farmacologia
5.
J Exp Bot ; 72(2): 491-509, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064811

RESUMO

Short-term effects of pCO2 (700-380 ppm; High carbon (HC) and Low carbon (LC), respectively) and nitrate content (50-5 µM; High nitrogen (HN) and Low nitrogen (LN), respectively on photosynthesis were investigated in Ulva rigida (Chlorophyta) under solar radiation (in-situ) and in the laboratory under artificial light (ex-situ). After six days of incubation at ambient temperature (AT), algae were subjected to a 4 °C temperature increase (AT+4 °C) for 3 d. Both in-situ and ex-situ maximal electron transport rate (ETRmax) and in situ gross photosynthesis (GP), measured by O2 evolution, presented highest values under HCHN, and lowest under HCLN, across all measuring systems. Maximal quantum yield (Fv/Fm), and ETRmax of photosystem (PS) II [ETR(II)max] and PSI [ETR(I)max], decreased under HCLN at AT+4 °C. Ex situ ETR was higher than in situ ETR. At noon, Fv/Fm decreased (indicating photoinhibition), whereas ETR(II)max and maximal non-photochemical quenching (NPQmax) increased. ETR(II)max decreased under AT+ 4 °C in contrast to Fv/Fm, photosynthetic efficiency (α ETR) and saturated irradiance (EK). Thus, U. rigida exhibited a decrease in photosynthesis under acidification, changing LN, and AT+4 °C. These results emphasize the importance of studying the interaction between environmental parameters using in-situ versus ex-situ conditions, when aiming to evaluate the impact of global change on marine macroalgae.


Assuntos
Clorófitas , Ulva , Dióxido de Carbono , Clorofila , Nitratos , Oxigênio , Fotossíntese , Temperatura
6.
J Phys Chem A ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132096

RESUMO

This work aims at exploring the potential energy surfaces of C24Hn=0,6,12,18,24 using the genetic algorithm in combination with the density functional based tight binding potential. The structural diversity was analyzed using order parameters, in particular the sum of the numbers of 5- and 6-carbon rings R5/6. The most abundant and lowest energy population was designated as the flake population (isomers of variable shapes, large R5/6 values), characterized by an increasing number of spherical isomers when nH/nC increases. Simultaneously, the fraction of the pretzel population (spherical isomers, smaller R5/6 values) increases. The fraction of the cage population (largest R5/6 values) remains extremely minor while the branched population (smallest R5/6 values) remains the highest energy population for all nH/nC ratios. For all C24Hn=0,6,12,18,24 clusters, the evolution of the carbon ring size distribution with energy clearly shows the correlation between the stability and the number of 6-carbon rings. The average values of the ionization potentials of all populations were found to decrease when nH/nC increases, ranging from 7.9 down to 6.4 eV. This trend was correlated to geometric and electronic factors, in particular to carbon hybridization. These results are of astrophysical interest, especially regarding the role of carbon species in the gas ionization.

7.
Phys Chem Chem Phys ; 22(16): 8846-8852, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32285866

RESUMO

We present a theoretical study on the thermodynamic and kinetic reactivity of Diels-Alder cycloadditions to several empty fullerenes in order to investigate the relationship between reaction energies and energy barriers. The results show that fullerenes with large HOMO-LUMO gaps present good correlation coefficients. In all other cases, two factors are responsible for the lack of correlation. First, the formation of unexpected adducts which are not the ones resulting from a [4+2] addition and second the change in the electronic structure of some adducts due to the mixing of the ground state with excited states close in energy.

8.
Phys Chem Chem Phys ; 22(38): 21968-21976, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32975253

RESUMO

A simple model, based on connectivity (adjacency) matrices, is introduced to study the relative stability of hydrogenated polycyclic aromatic hydrocarbons (HPAHs). The model allows us to consider a very large number of isomeric structures for HPAHs of variable size and degree of hydrogenation, by taking into account the different positions available in each hydrogenation step. The validity of our approach is demonstrated by comparing, for a few selected cases, with the predictions of Density Functional Theory calculations. We have found that aromaticity is the main factor governing the relative stability of HPAH isomers and that the most stable structures are in general those containing the maximum possible number of non-hydrogenated rings.

9.
Mar Drugs ; 18(2)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991623

RESUMO

UV-absorbing compounds, such as mycosporine-like amino acids (MAAs), are a group of secondary metabolites present in many marine species, including red seaweeds. In these organisms, the content and proportion of the composition of MAAs vary, depending on the species and several environmental factors. Its high cosmetic interest calls for research on the content and composition of MAAs, as well as the dynamics of MAAs accumulation in seaweeds from different latitudes. Therefore, this study aimed to survey the content of UV-absorbing MAAs in three Subantarctic red seaweeds during a seasonal cycle. Using spectrophotometric and HPLC techniques, the content and composition of MAAs of intertidal Iridaea tuberculosa, Nothogenia fastigiate, and Corallina officinalis were assessed. Some samples were also analyzed using high-resolution mass spectrometry coupled with HPLC-ESI-MS in order to identify more precisely the MAA composition. I. tuberculosa exhibited the highest MAA values (above 1 mg g-1 of dried mass weight), while C. officinalis showed values not exceeding 0.4 mg g-1. Porphyra-334 was the main component in N. fastigiata, whereas I. tuberculosa and C. officinalis exhibited a high content of palythine. Both content and composition of MAAs varied seasonally, with high concentration recorded in different seasons, depending on the species, i.e., winter (I. tuberculosa), spring (N. fastigiata), and summer (C. officinalis). HPLC-ESI-MS allowed us to identify seven different MAAs. Two were recorded for the first time in seaweeds from Subantarctic areas (mycosporine-glutamic acid and palythine-serine), and we also recorded an eighth UV-absorbing compound which remains unidentified.


Assuntos
Aminoácidos/isolamento & purificação , Rodófitas/química , Alga Marinha/química , Protetores Solares/isolamento & purificação , Aminoácidos/metabolismo , Aminoácidos/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Rodófitas/metabolismo , Estações do Ano , Alga Marinha/metabolismo , Metabolismo Secundário/efeitos da radiação , Protetores Solares/metabolismo , Raios Ultravioleta/efeitos adversos
10.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540290

RESUMO

Following the physiological complementary/parallel Celis-Plá et al., by inhibiting extracellular signal regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and cytokinin specific binding protein (p38), we assessed the role of the mitogen-activated protein kinases (MAPK) pathway in detoxification responses mediated by chronic copper (10 µM) in U. compressa. Parameters were taken at 6, 24, and 48 h, and 6 days (d). H2O2 and lipid peroxidation under copper and inhibition of ERK, JNK, or p38 alone increased but recovered by the sixth day. By blocking two or more MAPKs under copper, H2O2 and lipid peroxidation decayed even below controls. Inhibition of more than one MAPK (at 6 d) caused a decrease in total glutathione (reduced glutathione (GSH) + oxidised glutathione (GSSG)) and ascorbate (reduced ascorbate (ASC) + dehydroascorbate (DHA)), although in the latter it did not occur when the whole MAPK was blocked. Catalase (CAT), superoxide dismutase (SOD), thioredoxin (TRX) ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione synthase (GS), were downregulated when blocking more than one MAPK pathway. When one MAPK pathway was blocked under copper, a recovery and even enhancement of detoxification mechanisms was observed, likely due to crosstalk within the MAPKs and/or other signalling processes. In contrast, when more than one MAPK pathway were blocked under copper, impairment of detoxification defences occurred, demonstrating that MAPKs were key signalling mechanisms for detoxification in macroalgae.


Assuntos
Clorófitas/fisiologia , Cobre/metabolismo , Sistema de Sinalização das MAP Quinases , Ácido Ascórbico/metabolismo , Biodegradação Ambiental , Clorófitas/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos
11.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540294

RESUMO

There is currently no information regarding the role that whole mitogen activated protein kinase (MAPK) pathways play in counteracting environmental stress in photosynthetic organisms. To address this gap, we exposed Ulva compressa to chronic levels of copper (10 µM) specific inhibitors of Extracellular Signal Regulated Kinases (ERK), c-Jun N-terminal Kinases (JNK), and Cytokinin Specific Binding Protein (p38) MAPKs alone or in combination. Intracellular copper accumulation and photosynthetic activity (in vivo chlorophyll a fluorescence) were measured after 6 h, 24 h, 48 h, and 6 days of exposure. By day 6, when one (except JNK) or more of the MAPK pathways were inhibited under copper stress, there was a decrease in copper accumulation compared with algae exposed to copper alone. When at least two MAPKs were blocked, there was a decrease in photosynthetic activity expressed in lower productivity (ETRmax), efficiency (αETR), and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching (NPQmax), compared to both the control and copper-only treatments. In terms of accumulation, once the MAPK pathways were partially or completely blocked under copper, there was crosstalk between these and other signaling mechanisms to enhance metal extrusion/exclusion from cells. Crosstalk occurred among MAPK pathways to maintain photosynthesis homeostasis, demonstrating the importance of the signaling pathways for physiological performance. This study is complemented by a parallel/complementary article Rodríguez-Rojas et al. on the role of MAPKs in copper-detoxification.


Assuntos
Clorófitas/fisiologia , Cobre/metabolismo , Sistema de Sinalização das MAP Quinases , Biodegradação Ambiental , Clorófitas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
12.
Chemistry ; 23(15): 3666-3673, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28075509

RESUMO

The association behavior of an electron-donating, bowl-shaped, truxene-based tetrathiafulvalene (truxTTF) with two corannulene-based fullerene fragments, C32 H12 and C38 H14 , is investigated in several solvents. Formation of 1:1 complexes is followed by absorption titrations and complemented by density functional theory (DFT) calculations. The binding constants are in the range log Ka =2.9-3.5. DFT calculations reveal that the most stable arrangement is the conformation in which the 1,3-dithiole ring of truxTTF is placed inside the concave cavity of the corannulene derivative. This arrangement is confirmed experimentally by NMR measurements, and implies that a combination of π-π and CH-π interactions is the driving force for association. Time-dependent DFT calculations reproduce the experimental UV/Vis titrations and provide a detailed understanding of the spectral changes observed. Femtosecond transient absorption studies reveal the processes occurring after photoexcitation of either C32 H12 or C38 H14 and their supramolecular associates with truxTTF. In the case of truxTTF⋅C38 H14 , photoexcitation yields the charge-separated state truxTTF.+ ⋅C38 H14.- with a lifetime of approximately 160 ps.

14.
Sci Total Environ ; 916: 170326, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266720

RESUMO

Seawater desalination by reverse osmosis is growing exponentially due to water scarcity. Byproducts of this process (e.g. brines), are generally discharged directly into the coastal ecosystem, causing detrimental effects, on benthic organisms. Understanding the cellular stress response of these organisms (biomarkers), could be crucial for establishing appropriate salinity thresholds for discharged brines. Early stress biomarkers can serve as valuable tools for monitoring the health status of brine-impacted organisms, enabling the prediction of long-term irreversible damage caused by the desalination industry. In this study, we conducted laboratory-controlled experiments to assess cellular and molecular biomarkers against brine exposure in two salinity-sensitive Mediterranean seagrasses: Posidonia oceanica and Cymodocea nodosa. Treatments involved exposure to 39, 41, and 43 psu, for 6 h and 7 days. Results indicated that photosynthetic performance remained unaffected across all treatments. However, under 43 psu, P. oceanica and C. nodosa exhibited lipid oxidative damage, which occurred earlier in P. oceanica. Additionally, P. oceanica displayed an antioxidant response at higher salinities by accumulating phenolic compounds within 6 h and ascorbate within 7 d; whereas for C. nodosa the predominant antioxidant mechanisms were phenolic compounds accumulation and total radical scavenging activity, which was evident after 7 d of brines exposure. Finally, transcriptomic analyses in P. oceanica exposed to 43 psu for 7 days revealed a poor up-regulation of genes associated with brassinosteroid response and abiotic stress response, while a high down-regulation of genes related to primary metabolism was detected. In C. nodosa, up-regulated genes were involved in DNA repair, cell cycle regulation, and reproduction, while down-regulated genes were mainly associated with photosynthesis and ribosome assembly. Overall, these findings suggest that 43 psu is a critical salinity-damage threshold for both seagrasses; and despite the moderate overexpression of several transcripts that could confer salt tolerance, genes involved in essential biological processes were severely downregulated.


Assuntos
Alismatales , Ecossistema , Sais , Antioxidantes/metabolismo , Alismatales/fisiologia , Perfilação da Expressão Gênica , Mar Mediterrâneo
15.
Sci Total Environ ; 883: 163538, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37100139

RESUMO

Seagrasses, which are considered among the most ecologically valuable and endangered coastal ecosystems, have a narrowly limited distribution in the south-east Pacific, where Zostera chilensis is the only remaining relict. Due to water scarcity, desalination industry has grown in the last decades in the central-north coasts of Chile, which may be relevant to address in terms of potential impacts on benthic communities due to their associated high-salinity brine discharges to subtidal ecosystems. In this work, we assessed ecophysiological and cellular responses to desalination-extrapolable hypersalinity conditions on Z. chilensis. Mesocosms experiments were performed for 10 days, where plants were exposed to 3 different salinity treatments: 34 psu (control), 37 psu and 40 psu. Photosynthetic performance, H2O2 accumulation, and ascorbate content (reduced and oxidized) were measured, as well as relative gene expression of enzymes related to osmotic regulation and oxidative stress; these, at 1, 3, 6 and 10 days. Z. chilensis showed a decrease in photosynthetic parameters such as electron transport rate (ETRmax) and saturation irradiance (EkETR) under hypersalinity treatments, while non-photochemical quenching (NPQmax) presented an initial increment and a subsequent decline at 40 psu. H2O2 levels increased with hypersalinity, while ascorbate and dehydroascorbate only increased under 37 psu, although decreased along the experimental period. Increased salinities also triggered the expression of genes related to ion transport and osmolyte syntheses, but salinity-dependent up-regulated genes were mostly those related to the reactive oxygen species metabolism. The relict seagrass Z. chilensis has shown to withstand increased salinities that may be extrapolable to desalination effects in the short-term. As the latter is not fully clear in the long-term, and considering the restricted distribution and ecological importance, direct brine discharges to Z. chilensis meadows may not be recommended.


Assuntos
Magnoliopsida , Zosteraceae , Ecossistema , Zosteraceae/metabolismo , Chile , Magnoliopsida/metabolismo , Peróxido de Hidrogênio/metabolismo , Oceano Pacífico , Ácido Ascórbico , Medição de Risco , Salinidade
16.
Front Microbiol ; 13: 938066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060762

RESUMO

The virus-to-prokaryote ratio (VPR) has been used in many ecosystems to study the relationship between viruses and their hosts. While high VPR values indicate a high rate of prokaryotes' cell lysis, low values are interpreted as a decrease in or absence of viral activity. Salar de Huasco is a high-altitude wetland characterized by a rich microbial diversity associated with aquatic sites like springs, ponds, streams and a lagoon with variable physicochemical conditions. Samples from two ponds, Poza Rosada (PR) and Poza Verde (PV), were analyzed by epifluorescence microscopy to determine variability of viral and prokaryotic abundance and to calculate the VPR in a dry season. In addition, to put Salar de Huasco results into perspective, a compilation of research articles on viral and prokaryotic abundance, VPR, and metadata from various Southern hemisphere ecosystems was revised. The ecosystems were grouped into six categories: high-altitude wetlands, Pacific, Atlantic, Indian, and Southern Oceans and Antarctic lakes. Salar de Huasco ponds recorded similar VPR values (an average of 7.4 and 1.7 at PR and PV, respectively), ranging from 3.22 to 15.99 in PR. The VPR variability was associated with VA and chlorophyll a, when considering all data available for this ecosystem. In general, high-altitude wetlands recorded the highest VPR average (53.22 ± 95.09), followed by the Oceans, Southern (21.91 ± 25.72), Atlantic (19.57 ± 15.77) and Indian (13.43 ± 16.12), then Antarctic lakes (11.37 ± 15.82) and the Pacific Ocean (6.34 ± 3.79). Physicochemical variables, i.e., temperature, conductivity, nutrients (nitrate, ammonium, and phosphate) and chlorophyll a as a biological variable, were found to drive the VPR in the ecosystems analyzed. Thus, the viral activity in the Wetland followed similar trends of previous reports based on larger sets of metadata analyses. In total, this study highlights the importance of including viruses as a biological variable to study microbial temporal dynamics in wetlands considering their crucial role in the carbon budgets of these understudied ecosystems in the southern hemisphere.

17.
Front Plant Sci ; 13: 941061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247624

RESUMO

Global climate change is expected to have detrimental effects on coastal ecosystems, with impacts observable at the local and regional levels, depending on factors such as light, temperature, and nutrients. Shifts in dominance between primary producers that can capitalize on carbon availability for photosynthesis will have knock-on effects on marine ecosystems, affecting their ecophysiological responses and biological processes. Here, we study the ecophysiological vulnerability, photoacclimation capacity, and tolerance responses as ecophysiological responses of the intertidal kelp Lessonia spicata (Phaeophyceae, Laminariales) during a year through different seasons (autumn, winter, spring, and summer) in the Pacific Ocean (central Chile). Six different daily cycle experiments were carried out within each season. A battery of different biochemical assays associated with antioxidant responses and in-vivo chlorophyll a fluorescence parameter showed that during spring and summer, there was an increase in photosynthetic capacity in the macroalgae, although their responses varied depending on light and nutrient availability in the course of the year. Lessonia spicata showed maximal photosynthesis and a similar photoinhibition pattern in summer compared to the other seasons, and the contents of nitrate and phosphorous in seawater were less in winter. Thus, high irradiance during spring and summer displayed a higher maximal electron transport rate (ETRmax), irradiance of saturation (Ek), non-photochemical quenching (NPQmax), nitrogen and carbon contents, and photoprotector compound levels. Antioxidant activity increased also in summer, the seasonal period with the highest oxidative stress conditions, i.e., the highest level of hydrogen peroxide (H2O2). In contrast, under low irradiance, i.e., wintertime conditions, L. spicata demonstrated lower concentrations of the photosynthetic pigments such as chlorophyll a and carotenoids. Our study suggests that macroalgae that are subjected to increased irradiance and water temperature under lower nutrient availability mediated by seasonal changes (expected to worsen under climate change) respond with higher values of productivity, pigment contents, and photoprotective compounds. Thus, our findings strengthen the available evidence to predict that algae in the order Laminariales, specifically L. spicata (kelp), could better proliferate, with lower vulnerability and greater acclimation, than other marine species subject to future expected conditions associated with climate change.

18.
Environ Pollut ; 292(Pt A): 118365, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656678

RESUMO

Marine ecosystems in the Arctic and Antarctica were once thought pristine and away from important human influence. Today, it is known that global processes as atmospheric transport, local activities related with scientific research bases, military and touristic maritime traffic, among others, are a potential source of pollutants. Macroalgae have been recognized as reliable metal-biomonitoring organisms due to their accumulation capacity and physiological responses. Metal accumulation (Al, Cd, Cu, Fe, Pb, Zn, Se, and Hg) and photosynthetic parameters (associated with in vivo chlorophyll a fluorescence) were assessed in 77 samples from 13 different macroalgal species (Phaeophyta; Chlorophyta; Rhodophyta) from areas with high human influence, nearby research and sometimes military bases and a control area, King George Island, Antarctic Peninsula. Most metals in macroalgae followed a pattern influenced by rather algal lineage than site, with green seaweeds displaying trends of higher levels of metals as Al, Cu, Cr and Fe. Photosynthesis was also not affected by site, showing healthy organisms, especially in brown macroalgae, likely due to their great dimensions and morphological complexity. Finally, data did not demonstrate a relationship between metal accumulation and photosynthetic performance, evidencing low anthropogenic-derived impacts associated with metal excess in the area. Green macroalgae, especially Monostroma hariotti, are highlighted as reliable for further metal biomonitoring assessments. In the most ambitious to date seaweed biomonitoring effort conducted towards the Austral pole, this study improved by 91% the overall knowledge on metal accumulation in macroalgae from Antarctica, being the first report in species as Sarcopeltis antarctica and Plocamium cartilagineum. These findings may suggest that human short- and long-range metal influence on Antarctic coastal ecosystems still remains under control.


Assuntos
Alga Marinha , Poluentes Químicos da Água , Regiões Antárticas , Monitoramento Biológico , Clorofila A , Ecossistema , Monitoramento Ambiental , Humanos , Poluentes Químicos da Água/análise
19.
Photochem Photobiol ; 97(5): 1032-1042, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33829505

RESUMO

This study describes the relation of photosynthetic capacity, growth and biochemical compounds in the microalgae Porphyridium cruentum under saturated irradiance (200 µmol m-2  s-1 ) by white light (WL) and low-pressure sodium vapor lamps (SOX lamps-control) and supplemented by fluorescent lamps (FLs) with different light qualities (blue: λmax = 440 nm; green: λmax = 560 nm; and red: λmax = 660 nm). The maximum photosynthetic efficiency (Fv / Fm ) showed a positive correlation with the light quality by saturating light SOX in mixture with stimulating blue light than the white light (WL) at the harvest day (10 days). The production, that is maximal electron transport rate (ETRmax ), and energy dissipation, that is maximal nonphotochemical quenching (NPQmax ), had the same pattern throughout the time (3-6 days) being the values higher under white light (WL) compared with SOX and SOX plus supplemented different light qualities. Total protein levels increased significantly in the presence of SOX light, while phycoerythrin (B-PE) showed significant differences under SOX+ blue light. Arachidonic acid (ARA) was higher under SOX and SOX plus supplemented different light qualities than that under WL, whereas eicosapentaenoic acid (EPA) was the reverse. The high photomorphogenic potential by SOX light shows promising application for microalgal biotechnology.


Assuntos
Porphyridium , Rodófitas , Biotecnologia , Luz , Fotossíntese , Ficoeritrina/química , Ficoeritrina/metabolismo , Porphyridium/metabolismo , Rodófitas/metabolismo
20.
Front Plant Sci ; 12: 622150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276713

RESUMO

Solar radiation effects on the ecophysiology and biochemical responses of the brown macroalga Macrocystis pyrifera (L.) C. Agardh were evaluated using a mesocosm approach in Southern Chile. Treatments with different radiation attenuations were simulated with three vertical attenuation coefficients: (1) total (Kd = 0.8 m-1), (2) attenuated (Kd = 1.2 m-1), and (3) low (Kd = 1.6 m-1) radiation levels. Nutrient concentration and temperature did not show differences under the three light conditions. Photosynthetic activity was estimated by in vivo chlorophyll a (Chla) fluorescence under the three light treatments as an isolated physical factor in both in situ solar radiation in the field. This was achieved using a pulse amplitude-modulated (PAM) fluorometera-Diving PAM (in situ). Photosynthetic activity and biochemical composition were measured in winter during two daily cycles (1DC and 2DC) in different parts of the thalli of the plant: (1) canopy zone, (2) middle zone, and (3) down zone, associated with different depths in the mesocosm system. Nevertheless, the in situ electron transport rate (ETR in situ ) was higher in the exposed thalli of the canopy zone, independent of the light treatment conditions. The concentration of phenolic compounds (PC) increases in the down zone in the first daily cycle, and it was higher in the middle zone in the second daily cycle. The Chla increased in the morning time under total and attenuated radiation in the first daily cycle. Solar radiation increasing at midday prompted the photoinhibition of photosynthesis in the canopy zone but also an increase in productivity and phenol content. Therefore, light attenuation in the water column drove key differences in the photo-physiological responses of M. pyrifera, with the highest productivity occurring in thalli positioned in the canopy zone when exposed to solar irradiance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA