Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Cell Biol ; 24(7): 1114-1128, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817961

RESUMO

The mammalian heart arises from various populations of Mesp1-expressing cardiovascular progenitors (CPs) that are specified during the early stages of gastrulation. Mesp1 is a transcription factor that acts as a master regulator of CP specification and differentiation. However, how Mesp1 regulates the chromatin landscape of nascent mesodermal cells to define the temporal and spatial patterning of the distinct populations of CPs remains unknown. Here, by combining ChIP-seq, RNA-seq and ATAC-seq during mouse pluripotent stem cell differentiation, we defined the dynamic remodelling of the chromatin landscape mediated by Mesp1. We identified different enhancers that are temporally regulated to erase the pluripotent state and specify the pools of CPs that mediate heart development. We identified Zic2 and Zic3 as essential cofactors that act with Mesp1 to regulate its transcription-factor activity at key mesodermal enhancers, thereby regulating the chromatin remodelling and gene expression associated with the specification of the different populations of CPs in vivo. Our study identifies the dynamics of the chromatin landscape and enhancer remodelling associated with temporal patterning of early mesodermal cells into the distinct populations of CPs that mediate heart development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cromatina , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração , Proteínas de Homeodomínio/metabolismo , Mamíferos/metabolismo , Mesoderma , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Int J Cardiol ; 323: 220-228, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32858136

RESUMO

Endothelial cells covering the aortic and ventricular sides of the aortic valve leaflets are exposed to different stresses, in particular wall shear stress (WSS). Biomechanical stimuli actively regulate valve tissue structure and induce remodeling events leading to valve dysfunction. Endothelial to mesenchymal transformation (EndMT), for example, has been associated with aortic valve disease. The biomechanical response of cells at different sides of the leaflets has not been clearly characterized. To analyze the mechanical response of valve endothelial cells (VECs) we developed a unique fluid activation device that applies physiologically relevant pulsatile WSS. We characterized the morphology and function of adult porcine aortic VECs derived from the opposite sides of aortic valve leaflets following exposure to different pulsatile WSS. We found that elongation and orientation of cells in response to pulsatile WSS depends on their side of origin. Quantification of gene expression confirms phenotypic differences between aortic and ventricular VECs. Aortic VECs exposed to pulsatile WSS similar to that in vivo at the tip of aortic side of the valve leaflet upregulated pro-EndMT (ACTA2, Snail, TGFß1) and inflammation (ICAM-1, VCAM-1) genes, whereas expression of endothelial markers like PECAM-1 was decreased. Conversely, ventricular-VECs showed strong increase of PECAM-1 expression and no activation of pro-EndMT marker. Finally, we found that stress-induced genes are upregulated in both cell types, at higher levels in ventricular compared to aortic VECs. Application of physiological shear stress levels using a fluid activation device therefore reveals functional differences in VECs derived from opposite sides of the aortic valve leaflets.


Assuntos
Valva Aórtica , Células Endoteliais , Animais , Aorta , Estresse Mecânico , Suínos , Molécula 1 de Adesão de Célula Vascular
3.
Elife ; 92020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804075

RESUMO

Perturbation of addition of second heart field (SHF) cardiac progenitor cells to the poles of the heart tube results in congenital heart defects (CHD). The transcriptional programs and upstream regulatory events operating in different subpopulations of the SHF remain unclear. Here, we profile the transcriptome and chromatin accessibility of anterior and posterior SHF sub-populations at genome-wide levels and demonstrate that Hoxb1 negatively regulates differentiation in the posterior SHF. Spatial mis-expression of Hoxb1 in the anterior SHF results in hypoplastic right ventricle. Activation of Hoxb1 in embryonic stem cells arrests cardiac differentiation, whereas Hoxb1-deficient mouse embryos display premature cardiac differentiation. Moreover, ectopic differentiation in the posterior SHF of embryos lacking both Hoxb1 and its paralog Hoxa1 results in atrioventricular septal defects. Our results show that Hoxb1 plays a key role in patterning cardiac progenitor cells that contribute to both cardiac poles and provide new insights into the pathogenesis of CHD.


Assuntos
Cardiopatias Congênitas/genética , Proteínas de Homeodomínio/genética , Células-Tronco/metabolismo , Transcriptoma , Animais , Cromatina/metabolismo , Genes Homeobox , Cardiopatias Congênitas/embriologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA