Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Rapid Commun Mass Spectrom ; 30(2): 301-10, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26689160

RESUMO

RATIONALE: Cytochrome P450 (CYP450) reaction phenotyping (CRP) and kinetic studies are essential in early drug discovery to determine which metabolic enzymes react with new drug entities. A new semi-automated computer-assisted workflow for CRP is introduced in this work. This workflow provides not only information regarding parent disappearance, but also metabolite identification and relative metabolite formation rates for kinetic analysis. METHODS: Time-course experiments based on incubating six probe substrates (dextromethorphan, imipramine, buspirone, midazolam, ethoxyresorufin and diclofenac) with recombinant human enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and human liver microsomes (HLM) were performed. Liquid chromatography/high-resolution mass spectrometry (LC/HRMS) analysis was conducted with an internal standard to obtain high-resolution full-scan and MS/MS data. Data were analyzed using Mass-MetaSite software. A server application (WebMetabase) was used for data visualization and review. RESULTS: CRP experiments were performed, and the data were analyzed using a software-aided approach. This automated-evaluation approach led to (1) the detection of the CYP450 enzymes responsible for both substrate depletion and metabolite formation, (2) the identification of specific biotransformations, (3) the elucidation of metabolite structures based on MS/MS fragment analysis, and (4) the determination of the initial relative formation rates of major metabolites by CYP450 enzymes. CONCLUSIONS: This largely automated workflow enabled the efficient analysis of HRMS data, allowing rapid evaluation of the involvement of the main CYP450 enzymes in the metabolism of new molecules during drug discovery.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Descoberta de Drogas/métodos , Software , Espectrometria de Massas em Tandem/métodos , Sistema Enzimático do Citocromo P-450/genética , Humanos , Cinética , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fluxo de Trabalho
2.
Drug Discov Today Technol ; 10(1): e199-205, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24050248

RESUMO

One of the key factors in drug discovery is related to the metabolic properties of the lead compound, which may influence the bioavailability of the drug, its therapeutic window, and unwanted side-effects of its metabolites. Therefore, it is of critical importance to enable the fast translation of the experimentally determined metabolic information into design knowledge. The elucidation of the metabolite structure is the most structurally rich and informative end-point in the available range of metabolic assays. A methodology is presented to partially automate the analysis of this experimental information, making the process more efficient. The computer assisted method helps in the chromatographic peak selection and the metabolite structure assignment, enabling automatic data comparison for qualitative applications (kinetic analysis, cross species comparison).


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Preparações Farmacêuticas/metabolismo , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Reprodutibilidade dos Testes , Verapamil/metabolismo
3.
Eur J Hum Genet ; 28(1): 64-75, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877278

RESUMO

DPH1 variants have been associated with an ultra-rare and severe neurodevelopmental disorder, mainly characterized by variable developmental delay, short stature, dysmorphic features, and sparse hair. We have identified four new patients (from two different families) carrying novel variants in DPH1, enriching the clinical delineation of the DPH1 syndrome. Using a diphtheria toxin ADP-ribosylation assay, we have analyzed the activity of seven identified variants and demonstrated compromised function for five of them [p.(Leu234Pro); p.(Ala411Argfs*91); p.(Leu164Pro); p.(Leu125Pro); and p.(Tyr112Cys)]. We have built a homology model of the human DPH1-DPH2 heterodimer and have performed molecular dynamics simulations to study the effect of these variants on the catalytic sites as well as on the interactions between subunits of the heterodimer. The results show correlation between loss of activity, reduced size of the opening to the catalytic site, and changes in the size of the catalytic site with clinical severity. This is the first report of functional tests of DPH1 variants associated with the DPH1 syndrome. We demonstrate that the in vitro assay for DPH1 protein activity, together with structural modeling, are useful tools for assessing the effect of the variants on DPH1 function and may be used for predicting patient outcomes and prognoses.


Assuntos
Antígenos de Histocompatibilidade Menor/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Proteínas Supressoras de Tumor/genética , Adulto , Domínio Catalítico , Criança , Feminino , Humanos , Lactente , Células MCF-7 , Masculino , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Multimerização Proteica , Síndrome , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
4.
Eur J Hum Genet ; 28(1): 138, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31477843

RESUMO

Following the publication of the article, it was noted that the last column in Table 1, the total % should have read 5/8 (62.5) for the 'Epilepsy' row, and not 5.7 (71.4). This has now been amended in the HTML and PDF of the original article.

5.
ChemMedChem ; 4(3): 427-39, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19152365

RESUMO

A new method for fragment and scaffold replacement is presented that generates new families of compounds with biological activity, using GRID molecular interaction fields (MIFs) and the crystal structure of the targets. In contrast to virtual screening strategies, this methodology aims only to replace a fragment of the original molecule, maintaining the other structural elements that are known or suspected to have a critical role in ligand binding. First, we report a validation of the method, recovering up to 95% of the original fragments searched among the top-five proposed solutions, using 164 fragment queries from 11 diverse targets. Second, six key customizable parameters are investigated, concluding that filtering the receptor MIF using the co-crystallized ligand atom type has the greatest impact on the ranking of the proposed solutions. Finally, 11 examples using more realistic scenarios have been performed; diverse chemotypes are returned, including some that are similar to compounds that are known to bind to similar targets.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Proteínas/química , Proteínas/metabolismo , Algoritmos , Humanos , Ligantes , Estrutura Molecular , Ligação Proteica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA