Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 149(6): 4228, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241474

RESUMO

A portable device for the rapid concentration of Bacillus subtilis var niger spores, also known as Bacillus globigii (BG), using a thin-reflector acoustofluidic configuration is described. BG spores form an important laboratory analog for the Bacillus anthracis spores, a serious health and bioterrorism risk. Existing systems for spore detection have limitations on detection time and detection that will benefit from the combination with this technology. Thin-reflector acoustofluidic devices can be cheaply and robustly manufactured and provide a more reliable acoustic force than previously explored quarter-wave resonator systems. The system uses the acoustic forces to drive spores carried in sample flows of 30 ml/h toward an antibody functionalized surface, which captures and immobilizes them. In this implementation, spores were fluorescently labeled and imaged. Detection at concentrations of 100 CFU/ml were demonstrated in an assay time of 10 min with 60% capture. We envisage future systems to incorporate more advanced detection of the concentrated spores, leading to rapid, sensitive detection in the presence of significant noise.


Assuntos
Bacillus anthracis , Bacillus , Acústica , Esporos Bacterianos
2.
Ultrasound Med Biol ; 48(9): 1888-1898, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798625

RESUMO

The aim of this research was to explore the interaction between ultrasound-activated microbubbles (MBs) and Pseudomonas aeruginosa biofilms, specifically the effects of MB concentration, ultrasound exposure and substrate properties on bactericidal efficacy. Biofilms were grown using a Centre for Disease Control (CDC) bioreactor on polypropylene or stainless-steel coupons as acoustic analogues for soft and hard tissue, respectively. Biofilms were treated with different concentrations of phospholipid-shelled MBs (107-108 MB/mL), a sub-inhibitory concentration of gentamicin (4 µg/mL) and 1-MHz ultrasound with a continuous or pulsed (100-kHz pulse repetition frequency, 25% duty cycle, 0.5-MPa peak-to-peak pressure) wave. The effect of repeated ultrasound exposure with intervals of either 15- or 60-min was also investigated. With polypropylene coupons, the greatest bactericidal effect was achieved with 2 × 5 min of pulsed ultrasound separated by 60 min and a microbubble concentration of 5 × 107 MBs/mL. A 0.76 log (83%) additional reduction in the number of bacteria was achieved compared with the use of an antibiotic alone. With stainless-steel coupons, a 67% (0.46 log) reduction was obtained under the same exposure conditions, possibly due to enhancement of a standing wave field which inhibited MB penetration in the biofilm. These findings demonstrate the importance of treatment parameter selection in antimicrobial applications of MBs and ultrasound in different tissue environments.


Assuntos
Microbolhas , Pseudomonas aeruginosa , Acústica , Antibacterianos/farmacologia , Biofilmes , Impedância Elétrica , Gentamicinas/farmacologia , Polipropilenos/farmacologia , Aço Inoxidável/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA