Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J Suppl ; 25(Suppl E): E17-E24, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234235

RESUMO

Biventricular pacing (Biv) and left bundle branch area pacing (LBBAP) are methods of cardiac resynchronization therapy (CRT). Currently, little is known about how they differ in terms of ventricular activation. This study compared ventricular activation patterns in left bundle branch block (LBBB) heart failure patients using an ultra-high-frequency electrocardiography (UHF-ECG). This was a retrospective analysis including 80 CRT patients from two centres. UHF-ECG data were obtained during LBBB, LBBAP, and Biv. Left bundle branch area pacing patients were divided into non-selective left bundle branch pacing (NSLBBP) or left ventricular septal pacing (LVSP) and into groups with V6 R-wave peak times (V6RWPT) < 90 ms and ≥ 90 ms. Calculated parameters were: e-DYS (time difference between the first and last activation in V1-V8 leads) and Vdmean (average of V1-V8 local depolarization durations). In LBBB patients (n = 80) indicated for CRT, spontaneous rhythms were compared with Biv (39) and LBBAP rhythms (64). Although both Biv and LBBAP significantly reduced QRS duration (QRSd) compared with LBBB (from 172 to 148 and 152 ms, respectively, both P < 0.001), the difference between them was not significant (P = 0.2). Left bundle branch area pacing led to shorter e-DYS (24 ms) than Biv (33 ms; P = 0.008) and shorter Vdmean (53 vs. 59 ms; P = 0.003). No differences in QRSd, e-DYS, or Vdmean were found between NSLBBP, LVSP, and LBBAP with paced V6RWPTs < 90 and ≥ 90 ms. Both Biv CRT and LBBAP significantly reduce ventricular dyssynchrony in CRT patients with LBBB. Left bundle branch area pacing is associated with more physiological ventricular activation.

2.
Vnitr Lek ; 68(3): 160-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36208945

RESUMO

Telemedicine can be defined as a health care service that, specifically in the field of diagnostics, employs remote transfer of a large volume of data from a large number of subjects at the same time. This data is subsequently processed on a central basis and returned to a large number of health care providers by whom the service was ordered on national or international level. In arrhythmology, telemedicine is used particularly in long-term ECG monitoring to diagnose arrhythmias and check out treatment outcome via external recorders, smart watch, and implantable devices. To facilitate analysis of large telemedicine data volume, artificial intelligence is being increasingly exploited.


Assuntos
Desfibriladores Implantáveis , Marca-Passo Artificial , Telemedicina , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/terapia , Inteligência Artificial , Humanos
3.
J Cardiovasc Electrophysiol ; 32(3): 813-822, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476467

RESUMO

INTRODUCTION: Recent studies have shown that the baseline QRS area is associated with the clinical response after cardiac resynchronization therapy (CRT). In this study, we investigated the association of QRS area reduction (∆QRS area) after CRT with the outcome. We hypothesize that a larger ∆QRS area is associated with a better survival and echocardiographic response. METHODS AND RESULTS: Electrocardiograms (ECG) obtained before and 2-12 months after CRT from 1299 patients in a multi-center CRT-registry were analyzed. The QRS area was calculated from vectorcardiograms that were synthesized from 12-lead ECGs. The primary endpoint was a combination of all-cause mortality, heart transplantation, and left ventricular (LV) assist device implantation. The secondary endpoint was the echocardiographic response, defined as LV end-systolic volume reduction ≥ of 15%. Patients with ∆QRS area above the optimal cut-off value (62 µVs) had a lower risk of reaching the primary endpoint (hazard ratio: 0.43; confidence interval [CI] 0.33-0.56, p < .001), and a higher chance of echocardiographic response (odds ratio [OR] 3.3;CI 2.4-4.6, p < .0001). In multivariable analysis, ∆QRS area was independently associated with both endpoints. In patients with baseline QRS area ≥109 µVs, survival, and echocardiographic response were better when the ∆QRS area was ≥62 µVs (p < .0001). Logistic regression showed that in patients with baseline QRS area ≥109 µVs, ∆QRS area was the only significant predictor of survival (OR: 0.981; CI: 0.967-0.994, p = .006). CONCLUSION: ∆QRS area is an independent determinant of CRT response, especially in patients with a large baseline QRS area. Failure to achieve a large QRS area reduction with CRT is associated with a poor clinical outcome.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Ecocardiografia , Eletrocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Humanos , Estudos Retrospectivos , Volume Sistólico , Resultado do Tratamento
4.
J Cardiovasc Electrophysiol ; 32(5): 1385-1394, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33682277

RESUMO

BACKGROUND: Right ventricular (RV) pacing causes delayed activation of remote ventricular segments. We used the ultra-high-frequency ECG (UHF-ECG) to describe ventricular depolarization when pacing different RV locations. METHODS: In 51 patients, temporary pacing was performed at the RV septum (mSp); further subclassified as right ventricular inflow tract (RVIT) and right ventricular outflow tract (RVOT) for septal inflow and outflow positions (below or above the plane of His bundle in right anterior oblique), apex, anterior lateral wall, and at the basal RV septum with nonselective His bundle or RBB capture (nsHBorRBBp). The timings of UHF-ECG electrical activations were quantified as left ventricular lateral wall delay (LVLWd; V8 activation delay) and RV lateral wall delay (RVLWd; V1 activation delay). RESULTS: The LVLWd was shortest for nsHBorRBBp (11 ms [95% confidence interval = 5-17]), followed by the RVIT (19 ms [11-26]) and the RVOT (33 ms [27-40]; p < .01 between all of them), although the QRSd for the latter two were the same (153 ms (148-158) vs. 153 ms (148-158); p = .99). RV apical capture not only had a longer LVLWd (34 ms (26-43) compared to mSp (27 ms (20-34), p < .05), but its RVLWd (17 ms (9-25) was also the longest compared to other RV pacing sites (mean values for nsHBorRBBp, mSp, anterior and lateral wall captures being below 6 ms), p < .001 compared to each of them. CONCLUSION: RVIT pacing produces better ventricular synchrony compared to other RV pacing locations with myocardial capture. However, UHF-ECG ventricular dysynchrony seen during RVIT pacing is increased compared to concomitant capture of basal septal myocytes and His bundle or proximal right bundle branch.


Assuntos
Ventrículos do Coração , Septo Interventricular , Fascículo Atrioventricular , Estimulação Cardíaca Artificial , Eletrocardiografia , Ventrículos do Coração/diagnóstico por imagem , Humanos , Contração Miocárdica , Septo Interventricular/diagnóstico por imagem
5.
J Cardiovasc Electrophysiol ; 31(1): 300-307, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31788894

RESUMO

INTRODUCTION: The present study introduces a new ultra-high-frequency 14-lead electrocardiogram technique (UHF-ECG) for mapping ventricular depolarization patterns and calculation of novel dyssynchrony parameters that may improve the selection of patients and application of cardiac resynchronization therapy (CRT). METHODS: Components of the ECG in sixteen frequency bands within the 150 to 1000 Hz range were used to create ventricular depolarization maps. The maximum time difference between the UHF QRS complex centers of mass of leads V1 to V8 was defined as ventricular electrical dyssynchrony (e-DYS), and the duration at 50% of peak voltage amplitude in each lead was defined as the duration of local depolarization (Vd). Proof of principle measurements was performed in seven patients with left (left bundle branch block) and four patients with right bundle branch block (right bundle branch block) before and during CRT using biventricular and His-bundle pacing. RESULTS: The acquired activation maps reflect the activation sequence under the tested conditions. e-DYS decreased considerably more than QRS duration, during both biventricular pacing (-50% vs -8%) and His-bundle pacing (-77% vs -13%). While biventricular pacing slightly increased Vd, His-bundle pacing reduced Vd significantly (+11% vs -36%), indicating the contribution of the fast conduction system. Optimization of biventricular pacing by adjusting VV-interval showed a decrease of e-DYS from 102 to 36 ms with only a small Vd increase and QRS duration decrease. CONCLUSIONS: The UHF-ECG technique provides novel information about electrical activation of the ventricles from a standard ECG electrode setup, potentially improving the selection of patients for CRT and application of CRT.


Assuntos
Fascículo Atrioventricular/fisiopatologia , Bloqueio de Ramo/terapia , Terapia de Ressincronização Cardíaca , Eletrocardiografia , Insuficiência Cardíaca/terapia , Frequência Cardíaca , Potenciais de Ação , Idoso , Idoso de 80 Anos ou mais , Bloqueio de Ramo/diagnóstico , Bloqueio de Ramo/fisiopatologia , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Valor Preditivo dos Testes , Estudo de Prova de Conceito , Fatores de Tempo , Resultado do Tratamento , Função Ventricular Esquerda , Função Ventricular Direita
6.
J Electrocardiol ; 63: 159-163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31324399

RESUMO

BACKGROUND: Cardiac resynchronization therapy (CRT) is an established treatment in patients with heart failure and conduction abnormalities. However, a significant number of patients do not respond to CRT. Currently employed criteria for selection of patients for this therapy (QRS duration and morphology) have several shortcomings. QRS area was recently shown to provide superior association with CRT response. However, its assessment was not fully automated and required the presence of an expert. OBJECTIVE: Our objective was to develop a fully automated method for the assessment of vector-cardiographic (VCG) QRS area from electrocardiographic (ECG) signals. METHODS: Pre-implantation ECG recordings (N = 864, 695 left-bundle-branch block, 589 men) in PDF files were converted to allow signal processing. QRS complexes were found and clustered into morphological groups. Signals were converted from 12­lead ECG to 3­lead VCG and an average QRS complex was built. QRS area was computed from individual areas in the X, Y and Z leads. Practical usability was evaluated using Kaplan-Meier plots and 5-year follow-up data. RESULTS: The automatically calculated QRS area values were 123 ±â€¯48 µV.s (mean values and SD), while the manually determined QRS area values were 116 ±â€¯51 ms; the correlation coefficient between the two was r = 0.97. The automated and manual methods showed the same ability to stratify the population (hazard ratios 2.09 vs 2.03, respectively). CONCLUSION: The presented approach allows the fully automatic and objective assessment of QRS area values. SIGNIFICANCE: Until this study, assessing QRS area values required an expert, which means both additional costs and a risk of subjectivity. The presented approach eliminates these disadvantages and is publicly available as part of free signal-processing software.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Bloqueio de Ramo/diagnóstico , Bloqueio de Ramo/terapia , Eletrocardiografia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Humanos , Masculino , Resultado do Tratamento , Vetorcardiografia
7.
Ann Neurol ; 82(2): 299-310, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28779553

RESUMO

OBJECTIVE: In the present study, we aimed to investigate depth electroencephalographic (EEG) recordings in a large cohort of patients with drug-resistant epilepsy and to focus on interictal very high-frequency oscillations (VHFOs) between 500Hz and 2kHz. We hypothesized that interictal VHFOs are more specific biomarkers for epileptogenic zone compared to traditional HFOs. METHODS: Forty patients with focal epilepsy who underwent presurgical stereo-EEG (SEEG) were included in the study. SEEG data were recorded with a sampling rate of 25kHz, and a 30-minute resting period was analyzed for each patient. Ten patients met selected criteria for analyses of correlations with surgical outcome: detection of interictal ripples (Rs), fast ripples (FRs), and VHFOs; resective surgery; and at least 1 year of postoperative follow-up. Using power envelope computation and visual inspection of power distribution matrixes, electrode contacts with HFOs and VHFOs were detected and analyzed. RESULTS: Interictal very fast ripples (VFRs; 500-1,000Hz) were detected in 23 of 40 patients and ultrafast ripples (UFRs; 1,000-2,000Hz) in almost half of investigated subjects (n = 19). VFRs and UFRs were observed only in patients with temporal lobe epilepsy and were recorded exclusively from mesiotemporal structures. The UFRs were more spatially restricted in the brain than lower-frequency HFOs. When compared to R oscillations, significantly better outcomes were observed in patients with a higher percentage of removed contacts containing FRs, VFRs, and UFRs. INTERPRETATION: Interictal VHFOs are relatively frequent abnormal phenomena in patients with epilepsy, and appear to be more specific biomarkers for epileptogenic zone when compared to traditional HFOs. Ann Neurol 2017;82:299-310.


Assuntos
Ondas Encefálicas/fisiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/métodos , Endofenótipos , Epilepsias Parciais/fisiopatologia , Adulto , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsias Parciais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Cardiovasc Dev Dis ; 11(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38535099

RESUMO

Identifying electrical dyssynchrony is crucial for cardiac pacing and cardiac resynchronization therapy (CRT). The ultra-high-frequency electrocardiography (UHF-ECG) technique allows instantaneous dyssynchrony analyses with real-time visualization. This review explores the physiological background of higher frequencies in ventricular conduction and the translational evolution of UHF-ECG in cardiac pacing and CRT. Although high-frequency components were studied half a century ago, their exploration in the dyssynchrony context is rare. UHF-ECG records ECG signals from eight precordial leads over multiple beats in time. After initial conceptual studies, the implementation of an instant visualization of ventricular activation led to clinical implementation with minimal patient burden. UHF-ECG aids patient selection in biventricular CRT and evaluates ventricular activation during various forms of conduction system pacing (CSP). UHF-ECG ventricular electrical dyssynchrony has been associated with clinical outcomes in a large retrospective CRT cohort and has been used to study the electrophysiological differences between CSP methods, including His bundle pacing, left bundle branch (area) pacing, left ventricular septal pacing and conventional biventricular pacing. UHF-ECG can potentially be used to determine a tailored resynchronization approach (CRT through biventricular pacing or CSP) based on the electrical substrate (true LBBB vs. non-specified intraventricular conduction delay with more distal left ventricular conduction disease), for the optimization of CRT and holds promise beyond CRT for the risk stratification of ventricular arrhythmias.

9.
Sci Rep ; 14(1): 5681, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454102

RESUMO

From precordial ECG leads, the conventional determination of the negative derivative of the QRS complex (ND-ECG) assesses epicardial activation. Recently we showed that ultra-high-frequency electrocardiography (UHF-ECG) determines the activation of a larger volume of the ventricular wall. We aimed to combine these two methods to investigate the potential of volumetric and epicardial ventricular activation assessment and thereby determine the transmural activation sequence. We retrospectively analyzed 390 ECG records divided into three groups-healthy subjects with normal ECG, left bundle branch block (LBBB), and right bundle branch block (RBBB) patients. Then we created UHF-ECG and ND-ECG-derived depolarization maps and computed interventricular electrical dyssynchrony. Characteristic spatio-temporal differences were found between the volumetric UHF-ECG activation patterns and epicardial ND-ECG in the Normal, LBBB, and RBBB groups, despite the overall high correlations between both methods. Interventricular electrical dyssynchrony values assessed by the ND-ECG were consistently larger than values computed by the UHF-ECG method. Noninvasively obtained UHF-ECG and ND-ECG analyses describe different ventricular dyssynchrony and the general course of ventricular depolarization. Combining both methods based on standard 12-lead ECG electrode positions allows for a more detailed analysis of volumetric and epicardial ventricular electrical activation, including the assessment of the depolarization wave direction propagation in ventricles.


Assuntos
Eletrocardiografia , Ventrículos do Coração , Humanos , Estudos Retrospectivos , Eletrocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Bloqueio de Ramo/diagnóstico , Arritmias Cardíacas
11.
Sci Rep ; 13(1): 744, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639549

RESUMO

Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.


Assuntos
Eletrocorticografia , Eletroencefalografia , Humanos , Estudos Prospectivos , Eletroencefalografia/métodos , Encéfalo/fisiologia , Curva ROC
12.
J Neural Eng ; 20(3)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37285840

RESUMO

Objective.The current practices of designing neural networks rely heavily on subjective judgment and heuristic steps, often dictated by the level of expertise possessed by architecture designers. To alleviate these challenges and streamline the design process, we propose an automatic method, a novel approach to enhance the optimization of neural network architectures for processing intracranial electroencephalogram (iEEG) data.Approach.We present a genetic algorithm, which optimizes neural network architecture and signal pre-processing parameters for iEEG classification.Main results.Our method improved the macroF1 score of the state-of-the-art model in two independent datasets, from St. Anne's University Hospital (Brno, Czech Republic) and Mayo Clinic (Rochester, MN, USA), from 0.9076 to 0.9673 and from 0.9222 to 0.9400 respectively.Significance.By incorporating principles of evolutionary optimization, our approach reduces the reliance on human intuition and empirical guesswork in architecture design, thus promoting more efficient and effective neural network models. The proposed method achieved significantly improved results when compared to the state-of-the-art benchmark model (McNemar's test,p≪ 0.01). The results indicate that neural network architectures designed through machine-based optimization outperform those crafted using the subjective heuristic approach of a human expert. Furthermore, we show that well-designed data preprocessing significantly affects the models' performance.


Assuntos
Eletrocorticografia , Redes Neurais de Computação , Humanos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador
13.
Front Cardiovasc Med ; 10: 1140988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034324

RESUMO

Background: Left bundle branch pacing (LBBP) produces delayed, unphysiological activation of the right ventricle. Using ultra-high-frequency electrocardiography (UHF-ECG), we explored how bipolar anodal septal pacing with direct LBB capture (aLBBP) affects the resultant ventricular depolarization pattern. Methods: In patients with bradycardia, His bundle pacing (HBP), unipolar nonselective LBBP (nsLBBP), aLBBP, and right ventricular septal pacing (RVSP) were performed. Timing of local ventricular activation, in leads V1-V8, was displayed using UHF-ECG, and electrical dyssynchrony (e-DYS) was calculated as the difference between the first and last activation. Durations of local depolarizations were determined as the width of the UHF-QRS complex at 50% of its amplitude. Results: aLBBP was feasible in 63 of 75 consecutive patients with successful nsLBBP. aLBBP significantly improved ventricular dyssynchrony (mean -9 ms; 95% CI (-12;-6) vs. -24 ms (-27;-21), ), p < 0.001) and shortened local depolarization durations in V1-V4 (mean differences -7 ms to -5 ms (-11;-1), p < 0.05) compared to nsLBBP. aLBBP resulted in e-DYS -9 ms (-12; -6) vs. e-DYS 10 ms (7;14), p < 0.001 during HBP. Local depolarization durations in V1-V2 during aLBBP were longer than HBP (differences 5-9 ms (1;14), p < 0.05, with local depolarization duration in V1 during aLBBP being the same as during RVSP (difference 2 ms (-2;6), p = 0.52). Conclusion: Although aLBBP improved ventricular synchrony and depolarization duration of the septum and RV compared to unipolar nsLBBP, the resultant ventricular depolarization was still less physiological than during HBP.

14.
Physiol Meas ; 43(4)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35381586

RESUMO

Objective. This paper introduces a winning solution (team ISIBrno-AIMT) to the official round of PhysioNet Challenge 2021. The main goal of the challenge was a classification of ECG recordings into 26 multi-label pathological classes with a variable number of leads (e.g. 12, 6, 4, 3, 2). The main objective of this study is to verify whether the multi-head-attention mechanism influences the model performance.Approach. We introduced an ECG classification method based on the ResNet architecture with a multi-head attention mechanism for the official round of the challenge. However, empirical findings collected during model development suggested that the multi-head attention layer might not significantly impact the final classification performance. For this reason, during the follow-up round, we removed a multi-head attention layer to test the influence on model performance. Like the official round, the model is optimized using a mixture of loss functions, i.e. binary cross-entropy, custom challenge score loss function, and custom sparsity loss function. Probability thresholds for each classification class are estimated using the evolutionary optimization method. The final architecture consists of three submodels forming a majority voting classification ensemble.Main results. The modified model without the multi-head attention layer increased the overall challenge score to 0.59 compared to the 0.58 from the official round.Significance. Our findings from the follow-up submission support the fact that the multi-head attention layer in the proposed architecture does not significantly affect the classification performance.


Assuntos
Algoritmos , Eletrocardiografia , Eletrocardiografia/métodos , Entropia , Probabilidade
15.
Physiol Meas ; 43(7)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697013

RESUMO

During the lockdown of universities and the COVID-Pandemic most students were restricted to their homes. Novel and instigating teaching methods were required to improve the learning experience and so recent implementations of the annual PhysioNet/Computing in Cardiology (CinC) Challenges posed as a reference. For over 20 years, the challenges have proven repeatedly to be of immense educational value, besides leading to technological advances for specific problems. In this paper, we report results from the class 'Artificial Intelligence in Medicine Challenge', which was implemented as an online project seminar at Technical University Darmstadt, Germany, and which was heavily inspired by the PhysioNet/CinC Challenge 2017 'AF Classification from a Short Single Lead ECG Recording'. Atrial fibrillation is a common cardiac disease and often remains undetected. Therefore, we selected the two most promising models of the course and give an insight into the Transformer-based DualNet architecture as well as into the CNN-LSTM-based model and finally a detailed analysis for both. In particular, we show the model performance results of our internal scoring process for all submitted models and the near state-of-the-art model performance for the two named models on the official 2017 challenge test set. Several teams were able to achieve F1scores above/close to 90% on a hidden test-set of Holter recordings. We highlight themes commonly observed among participants, and report the results from the self-assessed student evaluation. Finally, the self-assessment of the students reported a notable increase in machine learning knowledge.


Assuntos
Fibrilação Atrial , COVID-19 , Algoritmos , Inteligência Artificial , Fibrilação Atrial/diagnóstico , COVID-19/diagnóstico , Controle de Doenças Transmissíveis , Eletrocardiografia/métodos , Humanos , Aprendizado de Máquina
16.
Sci Rep ; 12(1): 12641, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879331

RESUMO

While various QRS detection and classification methods were developed in the past, the Holter ECG data acquired during daily activities by wearable devices represent new challenges such as increased noise and artefacts due to patient movements. Here, we present a deep-learning model to detect and classify QRS complexes in single-lead Holter ECG. We introduce a novel approach, delivering QRS detection and classification in one inference step. We used a private dataset (12,111 Holter ECG recordings, length of 30 s) for training, validation, and testing the method. Twelve public databases were used to further test method performance. We built a software tool to rapidly annotate QRS complexes in a private dataset, and we annotated 619,681 QRS complexes. The standardised and down-sampled ECG signal forms a 30-s long input for the deep-learning model. The model consists of five ResNet blocks and a gated recurrent unit layer. The model's output is a 30-s long 4-channel probability vector (no-QRS, normal QRS, premature ventricular contraction, premature atrial contraction). Output probabilities are post-processed to receive predicted QRS annotation marks. For the QRS detection task, the proposed method achieved the F1 score of 0.99 on the private test set. An overall mean F1 cross-database score through twelve external public databases was 0.96 ± 0.06. In terms of QRS classification, the presented method showed micro and macro F1 scores of 0.96 and 0.74 on the private test set, respectively. Cross-database results using four external public datasets showed micro and macro F1 scores of 0.95 ± 0.03 and 0.73 ± 0.06, respectively. Presented results showed that QRS detection and classification could be reliably computed in one inference step. The cross-database tests showed higher overall QRS detection performance than any of compared methods.


Assuntos
Complexos Ventriculares Prematuros , Dispositivos Eletrônicos Vestíveis , Algoritmos , Artefatos , Eletrocardiografia/métodos , Eletrocardiografia Ambulatorial/métodos , Humanos , Processamento de Sinais Assistido por Computador
17.
Sci Rep ; 11(1): 11469, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075135

RESUMO

The study introduces and validates a novel high-frequency (100-400 Hz bandwidth, 2 kHz sampling frequency) electrocardiographic imaging (HFECGI) technique that measures intramural ventricular electrical activation. Ex-vivo experiments and clinical measurements were employed. Ex-vivo, two pig hearts were suspended in a human-torso shaped tank using surface tank electrodes, epicardial electrode sock, and plunge electrodes. We compared conventional epicardial electrocardiographic imaging (ECGI) with intramural activation by HFECGI and verified with sock and plunge electrodes. Clinical importance of HFECGI measurements was performed on 14 patients with variable conduction abnormalities. From 3 × 4 needle and 108 sock electrodes, 256 torso or 184 body surface electrodes records, transmural activation times, sock epicardial activation times, ECGI-derived activation times, and high-frequency activation times were computed. The ex-vivo transmural measurements showed that HFECGI measures intramural electrical activation, and ECGI-HFECGI activation times differences indicate endo-to-epi or epi-to-endo conduction direction. HFECGI-derived volumetric dyssynchrony was significantly lower than epicardial ECGI dyssynchrony. HFECGI dyssynchrony was able to distinguish between intraventricular conduction disturbance and bundle branch block patients.


Assuntos
Diagnóstico por Imagem , Eletrocardiografia , Sistema de Condução Cardíaco , Ventrículos do Coração , Animais , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Humanos , Suínos
18.
Front Neurosci ; 15: 635787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34045942

RESUMO

Background: Identifying patients with intractable epilepsy who would benefit from therapeutic chronic vagal nerve stimulation (VNS) preoperatively remains a major clinical challenge. We have developed a statistical model for predicting VNS efficacy using only routine preimplantation electroencephalogram (EEG) recorded with the TruScan EEG device (Brazdil et al., 2019). It remains to be seen, however, if this model can be applied in different clinical settings. Objective: To validate our model using EEG data acquired with a different recording system. Methods: We identified a validation cohort of eight patients implanted with VNS, whose preimplantation EEG was recorded on the BrainScope device and who underwent the EEG recording according to the protocol. The classifier developed in our earlier work, named Pre-X-Stim, was then employed to classify these patients as predicted responders or non-responders based on the dynamics in EEG power spectra. Predicted and real-world outcomes were compared to establish the applicability of this classifier. In total, two validation experiments were performed using two different validation approaches (single classifier or classifier voting). Results: The classifier achieved 75% accuracy, 67% sensitivity, and 100% specificity. Only two patients, both real-life responders, were classified incorrectly in both validation experiments. Conclusion: We have validated the Pre-X-Stim model on EEGs from a different recording system, which indicates its application under different technical conditions. Our approach, based on preoperative EEG, is easily applied and financially undemanding and presents great potential for real-world clinical use.

19.
Front Cardiovasc Med ; 8: 787414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950718

RESUMO

Background: Three different ventricular capture types are observed during left bundle branch pacing (LBBp). They are selective LBB pacing (sLBBp), non-selective LBB pacing (nsLBBp), and myocardial left septal pacing transiting from nsLBBp while decreasing the pacing output (LVSP). Study aimed to compare differences in ventricular depolarization between these captures using ultra-high-frequency electrocardiography (UHF-ECG). Methods: Using decremental pacing voltage output, we identified and studied nsLBBp, sLBBp, and LVSP in patients with bradycardia. Timing of ventricular activations in precordial leads was displayed using UHF-ECGs, and electrical dyssynchrony (e-DYS) was calculated as the difference between the first and last activation. The durations of local depolarizations (Vd) were determined as the width of the UHF-QRS complex at 50% of its amplitude. Results: In 57 consecutive patients, data were collected during nsLBBp (n = 57), LVSP (n = 34), and sLBBp (n = 23). Interventricular dyssynchrony (e-DYS) was significantly lower during LVSP -16 ms (-21; -11), than nsLBBp -24 ms (-28; -20) and sLBBp -31 ms (-36; -25). LVSP had the same V1d-V8d as nsLBBp and sLBBp except for V3d, which during LVSP was shorter than sLBBp; the mean difference -9 ms (-16; -1), p = 0.01. LVSP caused less interventricular dyssynchrony and the same or better local depolarization durations than nsLBBp and sLBBp irrespective of QRS morphology during spontaneous rhythm or paced QRS axis. Conclusions: In patients with bradycardia, LVSP in close proximity to LBB resulted in better interventricular synchrony than nsLBBp and sLBBp and did not significantly prolong depolarization of the left ventricular lateral wall.

20.
Heart Rhythm ; 18(8): 1281-1289, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33930549

RESUMO

BACKGROUND: Nonselective His-bundle pacing (nsHBp), nonselective left bundle branch pacing (nsLBBp), and left ventricular septal myocardial pacing (LVSP) are recognized as physiological pacing techniques. OBJECTIVE: The purpose of this study was to compare differences in ventricular depolarization between these techniques using ultra-high-frequency electrocardiography (UHF-ECG). METHODS: In patients with bradycardia, nsHBp, nsLBBp (confirmed concomitant left bundle branch [LBB] and myocardial capture), and LVSP (pacing in left ventricular [LV] septal position without proven LBB capture) were performed. Timings of ventricular activations in precordial leads were displayed using UHF-ECG, and electrical dyssynchrony (e-DYS) was calculated as the difference between the first and last activation. Duration of local depolarization (Vd) was determined as width of the UHF-QRS complex at 50% of its amplitude. RESULTS: In 68 patients, data were collected during nsLBBp (35), LVSP (96), and nsHBp (55). nsLBBp resulted in larger e-DYS than did LVSP and nsHBp [- 24 ms (-28;-19) vs -12 ms (-16;-9) vs 10 ms (7;14), respectively; P <.001]. nsLBBp produced similar values of Vd in leads V5-V8 (36-43 ms vs 38-43 ms; P = NS in all leads) but longer Vd in leads V1-V4 (47-59 ms vs 41-44 ms; P <.05) as nsHBp. LVSP caused prolonged Vd in leads V1-V8 compared to nsHBp and longer Vd in leads V5-V8 compared to nsLBBp (44-51 ms vs 36-43 ms; P <.05) regardless of R-wave peak time in lead V5 or QRS morphology in lead V1 present during LVSP. CONCLUSION: nslbbp preserves physiological LV depolarization but increases interventricular electrical dyssynchrony. LV lateral wall depolarization during LVSP is prolonged, but interventricular synchrony is preserved.


Assuntos
Fascículo Atrioventricular/fisiopatologia , Bloqueio de Ramo/terapia , Estimulação Cardíaca Artificial/métodos , Eletrocardiografia/métodos , Ventrículos do Coração/fisiopatologia , Função Ventricular Esquerda/fisiologia , Septo Interventricular/fisiopatologia , Idoso , Bloqueio de Ramo/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA