Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7845): 326-331, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505018

RESUMO

Resistance to insulin and insulin-like growth factor 1 (IGF1) in pancreatic ß-cells causes overt diabetes in mice; thus, therapies that sensitize ß-cells to insulin may protect patients with diabetes against ß-cell failure1-3. Here we identify an inhibitor of insulin receptor (INSR) and IGF1 receptor (IGF1R) signalling in mouse ß-cells, which we name the insulin inhibitory receptor (inceptor; encoded by the gene Iir). Inceptor contains an extracellular cysteine-rich domain with similarities to INSR and IGF1R4, and a mannose 6-phosphate receptor domain that is also found in the IGF2 receptor (IGF2R)5. Knockout mice that lack inceptor (Iir-/-) exhibit signs of hyperinsulinaemia and hypoglycaemia, and die within a few hours of birth. Molecular and cellular analyses of embryonic and postnatal pancreases from Iir-/- mice showed an increase in the activation of INSR-IGF1R in Iir-/- pancreatic tissue, resulting in an increase in the proliferation and mass of ß-cells. Similarly, inducible ß-cell-specific Iir-/- knockout in adult mice and in ex vivo islets led to an increase in the activation of INSR-IGF1R and increased proliferation of ß-cells, resulting in improved glucose tolerance in vivo. Mechanistically, inceptor interacts with INSR-IGF1R to facilitate clathrin-mediated endocytosis for receptor desensitization. Blocking this physical interaction using monoclonal antibodies against the extracellular domain of inceptor resulted in the retention of inceptor and INSR at the plasma membrane to sustain the activation of INSR-IGF1R in ß-cells. Together, our findings show that inceptor shields insulin-producing ß-cells from constitutive pathway activation, and identify inceptor as a potential molecular target for INSR-IGF1R sensitization and diabetes therapy.


Assuntos
Glicemia/metabolismo , Antagonistas da Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Animais , Glicemia/análise , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Tamanho Celular , Clatrina/metabolismo , Células Endócrinas/metabolismo , Endocitose , Retículo Endoplasmático/metabolismo , Teste de Tolerância a Glucose , Complexo de Golgi/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Proteínas de Membrana , Camundongos , Proteínas de Neoplasias/química , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia
2.
Mol Ther ; 31(8): 2408-2421, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37408309

RESUMO

Cancer cachexia is a severe systemic wasting disease that negatively affects quality of life and survival in patients with cancer. To date, treating cancer cachexia is still a major unmet clinical need. We recently discovered the destabilization of the AMP-activated protein kinase (AMPK) complex in adipose tissue as a key event in cachexia-related adipose tissue dysfunction and developed an adeno-associated virus (AAV)-based approach to prevent AMPK degradation and prolong cachexia-free survival. Here, we show the development and optimization of a prototypic peptide, Pen-X-ACIP, where the AMPK-stabilizing peptide ACIP is fused to the cell-penetrating peptide moiety penetratin via a propargylic glycine linker to enable late-stage functionalization using click chemistry. Pen-X-ACIP was efficiently taken up by adipocytes, inhibited lipolysis, and restored AMPK signaling. Tissue uptake assays showed a favorable uptake profile into adipose tissue upon intraperitoneal injection. Systemic delivery of Pen-X-ACIP into tumor-bearing animals prevented the progression of cancer cachexia without affecting tumor growth and preserved body weight and adipose tissue mass with no discernable side effects in other peripheral organs, thereby achieving proof of concept. As Pen-X-ACIP also exerted its anti-lipolytic activity in human adipocytes, it now provides a promising platform for further (pre)clinical development toward a novel, first-in-class approach against cancer cachexia.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias , Animais , Humanos , Tecido Adiposo/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Peptídeos/farmacologia , Preparações Farmacêuticas/metabolismo , Qualidade de Vida
3.
J Am Chem Soc ; 145(2): 851-863, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36603206

RESUMO

Resistance of bacterial pathogens against antibiotics is declared by WHO as a major global health threat. As novel antibacterial agents are urgently needed, we re-assessed the broad-spectrum myxobacterial antibiotic myxovalargin and found it to be extremely potent against Mycobacterium tuberculosis. To ensure compound supply for further development, we studied myxovalargin biosynthesis in detail enabling production via fermentation of a native producer. Feeding experiments as well as functional genomics analysis suggested a structural revision, which was eventually corroborated by the development of a concise total synthesis. The ribosome was identified as the molecular target based on resistant mutant sequencing, and a cryo-EM structure revealed that myxovalargin binds within and completely occludes the exit tunnel, consistent with a mode of action to arrest translation during a late stage of translation initiation. These studies open avenues for structure-based scaffold improvement toward development as an antibacterial agent.


Assuntos
Mycobacterium tuberculosis , Myxococcales , Antibacterianos/química , Ribossomos/metabolismo , Biossíntese de Proteínas
4.
J Org Chem ; 88(9): 5597-5608, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023463

RESUMO

The GE81112 series, consisting of three naturally occurring tetrapeptides and synthetic derivatives, is evaluated as a potential lead structure for the development of a new antibacterial drug. Although the first total synthesis of GE81112A reported by our group provided sufficient amounts of material for an initial in depth biological profiling of the compound, improvements of the routes toward the key building blocks were needed for further upscaling and structure-activity relationship studies. The major challenges identified were poor stereoselectivity in the synthesis of the C-terminal ß-hydroxy histidine intermediate and a concise access to all four isomers of the 3-hydroxy pipecolic acid. Herein, we report a second-generation synthesis of GE81112A, which is also applicable to access further representatives of this series. Based on Lajoie's ortho-ester-protected serine aldehydes as key building blocks, the described route provides both a satisfactory improvement in stereoselectivity of the ß-hydroxy histidine intermediate synthesis and a stereoselective approach toward both orthogonally protected cis and trans-3-hydroxy pipecolic acid.


Assuntos
Histidina , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Isomerismo
5.
Cell Mol Life Sci ; 79(2): 112, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35099607

RESUMO

T cell activation initiates protective adaptive immunity, but counterbalancing mechanisms are critical to prevent overshooting responses and to maintain immune homeostasis. The CARD11-BCL10-MALT1 (CBM) complex bridges T cell receptor engagement to NF-κB signaling and MALT1 protease activation. Here, we show that ABIN-1 is modulating the suppressive function of A20 in T cells. Using quantitative mass spectrometry, we identified ABIN-1 as an interactor of the CBM signalosome in activated T cells. A20 and ABIN-1 counteract inducible activation of human primary CD4 and Jurkat T cells. While A20 overexpression is able to silence CBM complex-triggered NF-κB and MALT1 protease activation independent of ABIN-1, the negative regulatory function of ABIN-1 depends on A20. The suppressive function of A20 in T cells relies on ubiquitin binding through the C-terminal zinc finger (ZnF)4/7 motifs, but does not involve the deubiquitinating activity of the OTU domain. Our mechanistic studies reveal that the A20/ABIN-1 module is recruited to the CBM complex via A20 ZnF4/7 and that proteasomal degradation of A20 and ABIN-1 releases the CBM complex from the negative impact of both regulators. Ubiquitin binding to A20 ZnF4/7 promotes destructive K48-polyubiquitination to itself and to ABIN-1. Further, after prolonged T cell stimulation, ABIN-1 antagonizes MALT1-catalyzed cleavage of re-synthesized A20 and thereby diminishes sustained CBM complex signaling. Taken together, interdependent post-translational mechanisms are tightly controlling expression and activity of the A20/ABIN-1 silencing module and the cooperative action of both negative regulators is critical to balance CBM complex signaling and T cell activation.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Linfócitos T/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/fisiologia , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Células Cultivadas , Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Células Jurkat , Ativação Linfocitária/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Ligação Proteica , Interferência de RNA/imunologia , Transdução de Sinais/fisiologia , Linfócitos T/imunologia
7.
J Chem Inf Model ; 61(10): 5256-5268, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34597510

RESUMO

African and American trypanosomiases are estimated to affect several million people across the world, with effective treatments distinctly lacking. New, ideally oral, treatments with higher efficacy against these diseases are desperately needed. Peroxisomal import matrix (PEX) proteins represent a very interesting target for structure- and ligand-based drug design. The PEX5-PEX14 protein-protein interface in particular has been highlighted as a target, with inhibitors shown to disrupt essential cell processes in trypanosomes, leading to cell death. In this work, we present a drug development campaign that utilizes the synergy between structural biology, computer-aided drug design, and medicinal chemistry in the quest to discover and develop new potential compounds to treat trypanosomiasis by targeting the PEX14-PEX5 interaction. Using the structure of the known lead compounds discovered by Dawidowski et al. as the template for a chemically advanced template search (CATS) algorithm, we performed scaffold-hopping to obtain a new class of compounds with trypanocidal activity, based on 2,3,4,5-tetrahydrobenzo[f][1,4]oxazepines chemistry. The initial compounds obtained were taken forward to a first round of hit-to-lead optimization by synthesis of derivatives, which show activities in the range of low- to high-digit micromolar IC50 in the in vitro tests. The NMR measurements confirm binding to PEX14 in solution, while immunofluorescent microscopy indicates disruption of protein import into the glycosomes, indicating that the PEX14-PEX5 protein-protein interface was successfully disrupted. These studies result in development of a novel scaffold for future lead optimization, while ADME testing gives an indication of further areas of improvement in the path from lead molecules toward a new drug active against trypanosomes.


Assuntos
Oxazepinas , Tripanossomicidas , Desenho Assistido por Computador , Proteínas de Membrana/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos , Receptores Citoplasmáticos e Nucleares , Proteínas Repressoras/metabolismo , Tripanossomicidas/farmacologia
8.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200865

RESUMO

A novel cytoplasmic dye-decolorizing peroxidase from Dictyostelium discoideum was investigated that oxidizes anthraquinone dyes, lignin model compounds, and general peroxidase substrates such as ABTS efficiently. Unlike related enzymes, an aspartate residue replaces the first glycine of the conserved GXXDG motif in Dictyostelium DyPA. In solution, Dictyostelium DyPA exists as a stable dimer with the side chain of Asp146 contributing to the stabilization of the dimer interface by extending the hydrogen bond network connecting two monomers. To gain mechanistic insights, we solved the Dictyostelium DyPA structures in the absence of substrate as well as in the presence of potassium cyanide and veratryl alcohol to 1.7, 1.85, and 1.6 Å resolution, respectively. The active site of Dictyostelium DyPA has a hexa-coordinated heme iron with a histidine residue at the proximal axial position and either an activated oxygen or CN- molecule at the distal axial position. Asp149 is in an optimal conformation to accept a proton from H2O2 during the formation of compound I. Two potential distal solvent channels and a conserved shallow pocket leading to the heme molecule were found in Dictyostelium DyPA. Further, we identified two substrate-binding pockets per monomer in Dictyostelium DyPA at the dimer interface. Long-range electron transfer pathways associated with a hydrogen-bonding network that connects the substrate-binding sites with the heme moiety are described.


Assuntos
Corantes/química , Dictyostelium/enzimologia , Heme/química , Peróxido de Hidrogênio/química , Peroxidase/química , Peroxidase/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Heme/metabolismo , Ligação de Hidrogênio , Oxirredução
9.
J Biol Chem ; 293(34): 13191-13203, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29950522

RESUMO

Constitutive NF-κB signaling represents a hallmark of chronic inflammation and autoimmune diseases. The E3 ligase TNF receptor-associated factor 6 (TRAF6) acts as a key regulator bridging innate immunity, pro-inflammatory cytokines, and antigen receptors to the canonical NF-κB pathway. Structural analysis and point mutations have unraveled the essential role of TRAF6 binding to the E2-conjugating enzyme ubiquitin-conjugating enzyme E2 N (Ubc13 or UBE2N) to generate Lys63-linked ubiquitin chains for inflammatory and immune signal propagation. Genetic mutations disrupting TRAF6-Ubc13 binding have been shown to reduce TRAF6 activity and, consequently, NF-κB activation. However, to date, no small-molecule modulator is available to inhibit the TRAF6-Ubc13 interaction and thereby counteract NF-κB signaling and associated diseases. Here, using a high-throughput small-molecule screening approach, we discovered an inhibitor of the TRAF6-Ubc13 interaction that reduces TRAF6-Ubc13 activity both in vitro and in cells. We found that this compound, C25-140, impedes NF-κB activation in various immune and inflammatory signaling pathways also in primary human and murine cells. Importantly, C25-140 ameliorated inflammation and improved disease outcomes of autoimmune psoriasis and rheumatoid arthritis in preclinical in vivo mouse models. Hence, the first-in-class TRAF6-Ubc13 inhibitor C25-140 expands the toolbox for studying the impact of the ubiquitin system on immune signaling and underscores the importance of TRAF6 E3 ligase activity in psoriasis and rheumatoid arthritis. We propose that inhibition of TRAF6 activity by small molecules represents a promising novel strategy for targeting autoimmune and chronic inflammatory diseases.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Inflamação/tratamento farmacológico , Psoríase/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mapas de Interação de Proteínas , Psoríase/metabolismo , Psoríase/patologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores
10.
Chembiochem ; 20(2): 129-130, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30624841

RESUMO

Chi-Huey Wong turned 70 in August 2018: This special issue is dedicated to that event. It can be seen from the variety of topics covered that he influenced the thinking of many of his former co-workers, who then transformed and developed these thoughts into fascinating, creative and independent research areas, enriching the science of bioorganic chemistry.


Assuntos
Oligossacarídeos , Humanos , Oligossacarídeos/química , Oligossacarídeos/metabolismo
11.
Int J Mol Sci ; 20(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167355

RESUMO

KcsA is a tetrameric potassium channel formed out of four identical monomeric subunits used as a standard model for selective potassium transport and pH-dependent gating. Large conformational changes are reported for tetramer and monomer upon gating, and the response of the monomer being controversial with the two major studies partially contradicting each other. KcsA was analyzed as functional tetramers embedded in liposomes and as monomer subunits with confocal Raman microscopy under physiological conditions for the active and the closed channel state, using 532 nm excitation to avoid introducing conformational changes during the measurement. Channel function was confirmed using liposome flux assay. While the classic fingerprint region below 1800 rel. cm-1 in the Raman spectrum of the tetramer was unaffected, the CH-stretching region between 2800 and 3200 rel. cm-1 was found to be strongly affected by the conformation. No pH-dependency was observed in the Raman spectra of the monomer subunits, which closely resembled the Raman spectrum of the tetramer in its active conformation, indicating that the open conformation of the monomer and not the closed conformation as postulated may equal the relaxed state of the molecule.


Assuntos
Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Canais de Potássio/química , Conformação Proteica , Multimerização Proteica , Análise Espectral Raman , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Lipossomos , Modelos Moleculares , Canais de Potássio/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
12.
Biochemistry ; 57(18): 2601-2605, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29664615

RESUMO

The heat shock protein 90 (Hsp90) family plays a critical role in maintaining the homeostasis of the intracellular environment for human and prokaryotic cells. Hsp90 orthologues were identified as important target proteins for cancer and plant disease therapies. It was shown that gambogic acid (GBA) has the potential to inhibit human Hsp90. However, it is unknown whether it is also able to act on the bacterial high-temperature protein (HtpG) analogue. In this work, we screened GBA and nine other novel potential Hsp90 inhibitors using a miniaturized high-throughput protein microarray-based assay and found that GBA shows an inhibitory effect on different Hsp90s after dissimilarity analysis of the protein sequence alignment. The dissociation constant of GBA and HtpG Xanthomonas (XcHtpG) computed from microscale thermophoresis is 682.2 ± 408 µM in the presence of ATP, which is indispensable for the binding of GBA to XcHtpG. Our results demonstrate that GBA is a promising Hsp90/HtpG inhibitor. The work further demonstrates that our assay concept has great potential for finding new potent Hsp/HtpG inhibitors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Xantonas/farmacologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Fluorescência , Proteínas de Choque Térmico HSP90/química , Temperatura Alta , Humanos , Ligação Proteica/efeitos dos fármacos , Xanthomonas/química , Xanthomonas/genética , Xantonas/química
13.
Angew Chem Int Ed Engl ; 56(2): 446-448, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27936285

RESUMO

Covalently binding molecules are frequently regarded as being generally promiscuous. In a recent study, binding selectivities and cellular target proteins of a wide variety of reactive fragments are examined in a proteome-wide context.


Assuntos
Células/química , Cisteína/química , Glutationa/química , Proteínas/química , Células/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Humanos , Proteínas/metabolismo
14.
Bioconjug Chem ; 27(10): 2281-2286, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27706941

RESUMO

Chemoselective functionalization of peptides and proteins to selectively introduce residues for detection, capture, or specific derivatization is of high interest to the synthetic community. Here we report a new method for the mild and effective mono-iodination of tyrosine residues in fully unprotected peptides. This method is highly chemoselective and compatible with a wide variety of functional groups. The introduced iodine can subsequently serve as a handle for further functionalization such as introduction of fluorescent dyes and thus be used for chemoselective labeling of isolated peptides.

15.
J Labelled Comp Radiopharm ; 59(14): 604-610, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27282912

RESUMO

Diabetes affects an increasing number of patients worldwide and is responsible for a significant rise in healthcare expenses. Imaging of ß-cells in vivo is expected to contribute to an improved understanding of the underlying pathophysiology, improved diagnosis, and development of new treatment options for diabetes. Here, we describe the first radiosyntheses of [3 H]-TAK875 and [18 F]-TAK875 derivatives to be used as ß-cell imaging probes addressing the free fatty acid receptor 1 (FFAR1/GPR40). The fluorine-labeled derivative showed similar agonistic activity as TAK875 in a functional assay. The radiosynthesis of the 18 F-labelled tracer 2a was achieved with 16.7 ± 5.7% radiochemical yield in a total synthesis time of 60-70 min.


Assuntos
Benzofuranos/síntese química , Benzofuranos/metabolismo , Radioisótopos de Flúor , Células Secretoras de Insulina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/síntese química , Sulfonas/metabolismo , Trítio , Benzofuranos/química , Benzofuranos/farmacocinética , Técnicas de Química Sintética , Células HEK293 , Humanos , Sulfonas/química , Sulfonas/farmacocinética
16.
Bioconjug Chem ; 26(3): 383-8, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25629889

RESUMO

Targeted drug-delivery methods are crucial for effective treatment of degenerative joint diseases such as osteoarthritis (OA). Toward this goal, we developed a small multivalent structure as a model drug for the attenuation of cartilage degradation. The DOTAM (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid amide)-based model structure is equipped with the cathepsin D protease inhibitor pepstatin A, a fluorophore, and peptide moieties targeting collagen II. In vivo injection of these soluble probes into the knee joints of mice resulted in 7-day-long local retention, while the drug carrier equipped with a scrambled peptide sequence was washed away within 6-8 h. The model drug conjugate successfully reduced the cathepsin D protease activity as measured by release of GAG peptide. Therefore, these conjugates represent a promising first drug conjugate for the targeted treatment of degenerative joint diseases.


Assuntos
Acetamidas/administração & dosagem , Cartilagem/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Compostos Heterocíclicos com 1 Anel/administração & dosagem , Osteoartrite/tratamento farmacológico , Acetamidas/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Portadores de Fármacos/metabolismo , Compostos Heterocíclicos com 1 Anel/metabolismo , Camundongos , Osteoartrite/metabolismo , Osteoartrite/patologia , Suínos
17.
Angew Chem Int Ed Engl ; 53(29): 7669-73, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24888522

RESUMO

The synthesis and evaluation of two cathepsin S-specific probes is described. For long-term retention of the probe at the target site and a high signal-to-noise ratio, we introduced a lipidation approach via the simple attachment of palmitoic acid to the reporter. After cathepsin S-specific cleavage in cultured cells and in a grafted tumor mouse model, fluorescence increased owing to dequenching and we observed an intracellular accumulation of the fluorescence in the target tissue. The lipidated probe provided a prolonged and strongly fluorescent signal in tumors when compared to the very similar non-lipidated probe, demonstrating that non-invasive tumor identification is feasable. The homing principle by probe lipidation might also work for selective administration of cytotoxic compounds to specifically reduce tumor mass.


Assuntos
Catepsinas/metabolismo , Metabolismo dos Lipídeos , Neoplasias Experimentais/patologia , Animais , Camundongos , Neoplasias Experimentais/enzimologia , Especificidade por Substrato
18.
Lab Chip ; 24(17): 4172-4181, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39099534

RESUMO

Effective continuous glucose monitoring solutions require consistent sensor performance over the lifetime of the device, a manageable variance between devices, and the capability of high volume, low cost production. Here we present a novel and microfabrication-compatible method of depositing and stabilizing enzyme layers on top of planar electrodes that can aid in the mass production of sensors while also improving their consistency. This work is focused on the fragile biorecognition layer as that has been a critical difficulty in the development of microfabricated sensors. We test this approach with glucose oxidase (GOx) and evaluate the sensor performance with amperometric measurements of in vitro glucose concentrations. Spincoating was used to deposit a uniform enzyme layer across a wafer, which was subsequently immobilized via glutaraldehyde vapor crosslinking and patterned via liftoff. This yielded an approximately 300 nm thick sensing layer which was applied to arrays of microfabricated platinum electrodes built on blank wafers. Taking advantage of their planar array format, measurements were then performed in high-throughput parallel instrumentation. Due to their thin structure, the coated electrodes exhibited subsecond stabilization times after the bias potential was applied. The deposited enzyme layers were measured to provide a sensitivity of 2.3 ± 0.2 µA mM-1 mm-2 with suitable saturation behavior and minimal performance shift observed over extended use. The same methodology was then demonstrated directly on top of wireless CMOS potentiostats to build a monolithic sensor with similar measured performance. This work demonstrates the effectiveness of the combination of spincoating and vapor stabilization processes for wafer scale enzymatic sensor functionalization and the potential for scalable fabrication of monolithic sensor-on-CMOS devices.


Assuntos
Técnicas Biossensoriais , Eletrodos , Enzimas Imobilizadas , Glucose Oxidase , Glucose , Glutaral , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Glutaral/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Técnicas Biossensoriais/instrumentação , Glucose/análise , Glucose/química , Reagentes de Ligações Cruzadas/química , Volatilização
19.
J Control Release ; 372: 522-530, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897293

RESUMO

Cyanine derivatives are organic dyes widely used for optical imaging. However, their potential in longitudinal optoacoustic imaging and photothermal therapy remains limited due to challenges such as poor chemical stability, poor photostability, and low photothermal conversion. In this study, we present a new structural modification for cyanine dyes by introducing a strongly electron-withdrawing group (barbiturate), resulting in a new series of barbiturate-cyanine dyes (BC810, BC885, and BC1010) with suppressed fluorescence and enhanced stability. Furthermore, the introduction of BC1010 into block copolymers (PEG114-b-PCL60) induces aggregation-caused quenching, further boosting the photothermal performance. The photophysical properties of nanoparticles (BC1010-NPs) include their remarkably broad absorption range from 900 to 1200 nm for optoacoustic imaging, allowing imaging applications in NIR-I and NIR-II windows. The combined effect of these strategies, including improved photostability, enhanced nonradiative relaxation, and aggregation-caused quenching, enables the detection of optoacoustic signals with high sensitivity and effective photothermal treatment of in vivo tumor models when BC1010-NPs are administered before irradiation with a 1064 nm laser. This research introduces a barbiturate-functionalized cyanine derivative with optimal properties for efficient optoacoustics-guided theranostic applications. This new compound holds significant potential for biomedical use, facilitating advancements in optoacoustic-guided diagnostic and therapeutic approaches.


Assuntos
Barbitúricos , Carbocianinas , Nanopartículas , Técnicas Fotoacústicas , Fototerapia , Animais , Técnicas Fotoacústicas/métodos , Carbocianinas/química , Carbocianinas/administração & dosagem , Nanopartículas/química , Barbitúricos/química , Barbitúricos/administração & dosagem , Fototerapia/métodos , Humanos , Camundongos Endogâmicos BALB C , Feminino , Camundongos Nus , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Corantes Fluorescentes/administração & dosagem , Camundongos , Terapia Fototérmica/métodos , Neoplasias/terapia
20.
Redox Biol ; 66: 102874, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37683300

RESUMO

OBJECTIVE: Enhancing energy turnover via uncoupled mitochondrial respiration in adipose tissue has great potential to improve human obesity and other metabolic complications. However, the amount of human brown adipose tissue and its uncoupling protein 1 (UCP1) is low in obese patients. Recently, a class of endogenous molecules, N-acyl amino acids (NAAs), was identified as mitochondrial uncouplers in murine adipocytes, presumably acting via the adenine nucleotide translocator (ANT). Given the translational potential, we investigated the bioenergetic effects of NAAs in human adipocytes, characterizing beneficial and adverse effects, dose ranges, amino acid derivatives and underlying mechanisms. METHOD: NAAs with neutral (phenylalanine, leucine, isoleucine) and polar (lysine) residues were synthetized and assessed in intact and permeabilized human adipocytes using plate-based respirometry. The Seahorse technology was applied to measure bioenergetic parameters, dose-dependency, interference with UCP1 and adenine nucleotide translocase (ANT) activity, as well as differences to the established chemical uncouplers niclosamide ethanolamine (NEN) and 2,4-dinitrophenol (DNP). RESULT: NAAs with neutral amino acid residues potently induce uncoupled respiration in human adipocytes in a dose-dependent manner, even in the presence of the UCP1-inhibitor guanosine diphosphate (GDP) and the ANT-inhibitor carboxyatractylate (CAT). However, neutral NAAs significantly reduce maximal oxidation rates, mitochondrial ATP-production, coupling efficiency and reduce adipocyte viability at concentrations above 25 µM. The in vitro therapeutic index (using induced proton leak and viability as determinants) of NAAs is lower than that of NEN and DNP. CONCLUSION: NAAs are potent mitochondrial uncouplers in human adipocytes, independent of UCP1 and ANT. However, previously unnoticed adverse effects harm adipocyte functionality, reduce the therapeutic index of NAAs in vitro and therefore question their suitability as anti-obesity agents without further chemical modifications.


Assuntos
Adipócitos , Aminoácidos , Humanos , Animais , Camundongos , Etanolamina , Tecido Adiposo Marrom , Metabolismo Energético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA