Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 590(7846): 438-444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505029

RESUMO

Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.


Assuntos
Aclimatação/genética , Biocombustíveis , Genoma de Planta/genética , Genômica , Aquecimento Global , Panicum/genética , Poliploidia , Biomassa , Ecótipo , Evolução Molecular , Fluxo Gênico , Pool Gênico , Introgressão Genética , Anotação de Sequência Molecular , Panicum/classificação , Panicum/crescimento & desenvolvimento , Estados Unidos
2.
Nat Chem Biol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043959

RESUMO

Soapwort (Saponaria officinalis) is a flowering plant from the Caryophyllaceae family with a long history of human use as a traditional source of soap. Its detergent properties are because of the production of polar compounds (saponins), of which the oleanane-based triterpenoid saponins, saponariosides A and B, are the major components. Soapwort saponins have anticancer properties and are also of interest as endosomal escape enhancers for targeted tumor therapies. Intriguingly, these saponins share common structural features with the vaccine adjuvant QS-21 and, thus, represent a potential alternative supply of saponin adjuvant precursors. Here, we sequence the S. officinalis genome and, through genome mining and combinatorial expression, identify 14 enzymes that complete the biosynthetic pathway to saponarioside B. These enzymes include a noncanonical cytosolic GH1 (glycoside hydrolase family 1) transglycosidase required for the addition of D-quinovose. Our results open avenues for accessing and engineering natural and new-to-nature pharmaceuticals, drug delivery agents and potential immunostimulants.

3.
Nat Plants ; 10(2): 240-255, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278954

RESUMO

We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.


Assuntos
Alismatales , Zosteraceae , Alismatales/genética , Zosteraceae/genética , Ecossistema
4.
Curr Biol ; 33(23): 5199-5207.e4, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37913769

RESUMO

Viruses are the most abundant biological entities in the world's oceans, where they play important ecological and biogeochemical roles. Metagenomics is revealing new groups of eukaryotic viruses, although disconnected from known hosts. Among these are the recently described mirusviruses, which share some similarities with herpesviruses.1 50 years ago, "herpes-type" viral particles2 were found in a thraustochytrid member of the labyrinthulomycetes, a diverse group of abundant and ecologically important marine eukaryotes,3,4 but could not be further characterized by methods then available. Long-read sequencing has allowed us to connect the biology of mirusviruses and thraustochytrids. We sequenced the genome of the genetically tractable model thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381 and found that its 26 linear chromosomes have an extraordinary configuration. Subtelomeric ribosomal DNAs (rDNAs) found at all chromosome ends are interspersed with long repeated sequence elements denoted as long repeated-telomere and rDNA spacers (LORE-TEARS). We identified two genomic elements that are related to mirusvirus genomes. The first is a ∼300-kbp episome (circular element 1 [CE1]) present at a high copy number. Strikingly, the second, distinct, mirusvirus-like element is integrated between two sets of rDNAs and LORE-TEARS at the left end of chromosome 15 (LE-Chr15). Similar to metagenomically derived mirusviruses, these putative A. limacinum mirusviruses have a virion module related to that of herpesviruses along with an informational module related to nucleocytoplasmic large DNA viruses (NCLDVs). CE1 and LE-Chr15 bear striking similarities to episomal and endogenous latent forms of herpesviruses, respectively, and open new avenues of research into marine virus-host interactions.


Assuntos
Vírus , DNA Ribossômico , Genoma , Heterocromatina , Eucariotos , Telômero , Filogenia
5.
Nat Plants ; 9(2): 238-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747050

RESUMO

Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.


Assuntos
Ecossistema , Sphagnopsida , Sequestro de Carbono , Sphagnopsida/fisiologia , Clima , Cromossomos Sexuais
6.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522135

RESUMO

Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.


Assuntos
Transferência Genética Horizontal , Microalgas , Transferência Genética Horizontal/genética , Microalgas/genética , Regiões Árticas , Oceanos e Mares , Camada de Gelo , Bactérias
7.
Nat Commun ; 14(1): 3694, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344528

RESUMO

Finger millet is a key food security crop widely grown in eastern Africa, India and Nepal. Long considered a 'poor man's crop', finger millet has regained attention over the past decade for its climate resilience and the nutritional qualities of its grain. To bring finger millet breeding into the 21st century, here we present the assembly and annotation of a chromosome-scale reference genome. We show that this ~1.3 million years old allotetraploid has a high level of homoeologous gene retention and lacks subgenome dominance. Population structure is mainly driven by the differential presence of large wild segments in the pericentromeric regions of several chromosomes. Trait mapping, followed by variant analysis of gene candidates, reveals that loss of purple coloration of anthers and stigma is associated with loss-of-function mutations in the finger millet orthologs of the maize R1/B1 and Arabidopsis GL3/EGL3 anthocyanin regulatory genes. Proanthocyanidin production in seed is not affected by these gene knockouts.


Assuntos
Eleusine , Humanos , Lactente , Eleusine/genética , Melhoramento Vegetal , Genoma de Planta/genética , Fenótipo , África Oriental
8.
Front Plant Sci ; 13: 869582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432409

RESUMO

The classic V (violet, purple) gene of common bean (Phaseolus vulgaris) functions in a complex genetic network that controls seed coat and flower color and flavonoid content. V was cloned to understand its role in the network and the evolution of its orthologs in the Viridiplantae. V mapped genetically to a narrow interval on chromosome Pv06. A candidate gene was selected based on flavonoid analysis and confirmed by recombinational mapping. Protein and domain modeling determined V encodes flavonoid 3'5' hydroxylase (F3'5'H), a P450 enzyme required for the expression of dihydromyricetin-derived flavonoids in the flavonoid pathway. Eight recessive haplotypes, defined by mutations of key functional domains required for P450 activities, evolved independently in the two bean gene pools from a common ancestral gene. V homologs were identified in Viridiplantae orders by functional domain searches. A phylogenetic analysis determined F3'5'H first appeared in the Streptophyta and is present in only 41% of Angiosperm reference genomes. The evolutionarily related flavonoid pathway gene flavonoid 3' hydroxylase (F3'H) is found nearly universally in all Angiosperms. F3'H may be conserved because of its role in abiotic stress, while F3'5'H evolved as a major target gene for the evolution of flower and seed coat color in plants.

9.
Sci Adv ; 8(6): eabj4633, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138897

RESUMO

Rapid environmental change can lead to population extinction or evolutionary rescue. The global staple crop sorghum (Sorghum bicolor) has recently been threatened by a global outbreak of an aggressive new biotype of sugarcane aphid (SCA; Melanaphis sacchari). We characterized genomic signatures of adaptation in a Haitian breeding population that had rapidly adapted to SCA infestation, conducting evolutionary population genomics analyses on 296 Haitian lines versus 767 global accessions. Genome scans and geographic analyses suggest that SCA adaptation has been conferred by a globally rare East African allele of RMES1, which spread to breeding programs in Africa, Asia, and the Americas. De novo genome sequencing revealed potential causative variants at RMES1. Markers developed from the RMES1 sweep predicted resistance in eight independent commercial and public breeding programs. These findings demonstrate the value of evolutionary genomics to develop adaptive trait technology and highlight the benefits of global germplasm exchange to facilitate evolutionary rescue.

10.
Nat Commun ; 13(1): 7731, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513676

RESUMO

A number of crop wild relatives can tolerate extreme stress to a degree outside the range observed in their domesticated relatives. However, it is unclear whether or how the molecular mechanisms employed by these species can be translated to domesticated crops. Paspalum (Paspalum vaginatum) is a self-incompatible and multiply stress-tolerant wild relative of maize and sorghum. Here, we describe the sequencing and pseudomolecule level assembly of a vegetatively propagated accession of P. vaginatum. Phylogenetic analysis based on 6,151 single-copy syntenic orthologues conserved in 6 related grass species places paspalum as an outgroup of the maize-sorghum clade. In parallel metabolic experiments, paspalum, but neither maize nor sorghum, exhibits a significant increase in trehalose when grown under nutrient-deficit conditions. Inducing trehalose accumulation in maize, imitating the metabolic phenotype of paspalum, results in autophagy dependent increases in biomass accumulation.


Assuntos
Paspalum , Sorghum , Paspalum/genética , Paspalum/metabolismo , Zea mays/genética , Zea mays/metabolismo , Trealose/metabolismo , Biomassa , Filogenia , Sorghum/metabolismo , Autofagia/genética
11.
Nat Plants ; 8(9): 1038-1051, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36050461

RESUMO

The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.


Assuntos
Gleiquênias , Elementos de DNA Transponíveis , Evolução Molecular , Gleiquênias/genética , Genoma de Planta , Plantas/genética
12.
Plant Genome ; 14(3): e20114, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34275202

RESUMO

The stiff-stalk heterotic group in Maize (Zea mays L.) is an important source of inbreds used in U.S. commercial hybrid production. Founder inbreds B14, B37, B73, and, to a lesser extent, B84, are found in the pedigrees of a majority of commercial seed parent inbred lines. We created high-quality genome assemblies of B84 and four expired Plant Variety Protection (ex-PVP) lines LH145 representing B14, NKH8431 of mixed descent, PHB47 representing B37, and PHJ40, which is a Pioneer Hi-Bred International (PHI) early stiff-stalk type. Sequence was generated using long-read sequencing achieving highly contiguous assemblies of 2.13-2.18 Gbp with N50 scaffold lengths >200 Mbp. Inbred-specific gene annotations were generated using a core five-tissue gene expression atlas, whereas transposable element (TE) annotation was conducted using de novo and homology-directed methodologies. Compared with the reference inbred B73, synteny analyses revealed extensive collinearity across the five stiff-stalk genomes, although unique components of the maize pangenome were detected. Comparison of this set of stiff-stalk inbreds with the original Iowa Stiff Stalk Synthetic breeding population revealed that these inbreds represent only a proportion of variation in the original stiff-stalk pool and there are highly conserved haplotypes in released public and ex-Plant Variety Protection inbreds. Despite the reduction in variation from the original stiff-stalk population, substantial genetic and genomic variation was identified supporting the potential for continued breeding success in this pool. The assemblies described here represent stiff-stalk inbreds that have historical and commercial relevance and provide further insight into the emerging maize pangenome.


Assuntos
Melhoramento Vegetal , Zea mays , Genômica , Haplótipos , Vigor Híbrido , Zea mays/genética
13.
Nat Commun ; 11(1): 3670, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728126

RESUMO

Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution.


Assuntos
Brachypodium/genética , Diploide , Evolução Molecular , Genoma de Planta , Poliploidia , Cromossomos de Plantas/genética , Genoma de Cloroplastos , Genômica , Hibridização Genética , Filogenia , Polimorfismo de Nucleotídeo Único , Retroelementos/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA