Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 39(3): e101625, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31556459

RESUMO

Meiosis is key to sexual reproduction and genetic diversity. Here, we show that the Arabidopsis cyclin-dependent kinase Cdk1/Cdk2 homolog CDKA;1 is an important regulator of meiosis needed for several aspects of meiosis such as chromosome synapsis. We identify the chromosome axis protein ASYNAPTIC 1 (ASY1), the Arabidopsis homolog of Hop1 (homolog pairing 1), essential for synaptonemal complex formation, as a target of CDKA;1. The phosphorylation of ASY1 is required for its recruitment to the chromosome axis via ASYNAPTIC 3 (ASY3), the Arabidopsis reductional division 1 (Red1) homolog, counteracting the disassembly activity of the AAA+ ATPase PACHYTENE CHECKPOINT 2 (PCH2). Furthermore, we have identified the closure motif in ASY1, typical for HORMA domain proteins, and provide evidence that the phosphorylation of ASY1 regulates the putative self-polymerization of ASY1 along the chromosome axis. Hence, the phosphorylation of ASY1 by CDKA;1 appears to be a two-pronged mechanism to initiate chromosome axis formation in meiosis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a DNA/química , Mutação , Fosforilação , Ligação Proteica , Multimerização Proteica
2.
EMBO J ; 35(19): 2068-2086, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27497297

RESUMO

Upon DNA damage, cyclin-dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology-dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant-specific B1-type CDKs (CDKB1s) and the class of B1-type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1-CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA CYCB1;1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell-cycle activity is blocked after DNA damage, CDKB1-CYCB1 complexes are specifically activated to mediate HR.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Reparo de DNA por Recombinação , Proteínas de Arabidopsis/genética , Ciclina B/genética , Quinases Ciclina-Dependentes/genética , Rad51 Recombinase/metabolismo , Fatores de Transcrição/metabolismo
3.
PNAS Nexus ; 2(3): pgac302, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36992817

RESUMO

The chromosome axis plays a crucial role in meiotic recombination. Here, we study the function of ASY1, the Arabidopsis homolog of the yeast chromosome axis-associated component Hop1. Specifically, we characterized cross-over (CO) distribution in female and male meiosis by deep sequencing of the progeny of an allelic series of asy1 mutants. Combining data from nearly 1,000 individual plants, we find that reduced ASY1 functionality leads to genomic instability and sometimes drastic genomic rearrangements. We further observed that COs are less frequent and appear in more distal chromosomal regions in plants with no or reduced ASY1 functionality, consistent with previous analyses. However, our sequencing approach revealed that the reduction in CO number is not as dramatic as suggested by cytological analyses. Analysis of double mutants of asy1 with mutants with three other CO factors, MUS81, MSH4, and MSH5, as well as the determination of foci number of the CO regulator MLH1 demonstrates that the majority of the COs in asy1, similar to the situation in the wildtype (WT), largely belong to the class I, which are subject to interference. However, these COs are redistributed in asy1 mutants and typically appear much closer than in the WT. Hence, ASY1 plays a key role in CO interference that spaces COs along a chromosome. Conversely, since a large proportion of chromosomes do not receive any CO, we conclude that CO assurance, the process that ensures the obligatory assignment of one CO per chromosome, is also affected in asy1 mutants.

4.
Stem Cells ; 28(6): 1081-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20506111

RESUMO

The major components of the mammary ductal tree are an inner layer of luminal cells, an outer layer of myoepithelial cells, and a basement membrane that separates the ducts from the underlying stroma. Cells in the outer layer express CD10, a zinc-dependent metalloprotease that regulates the growth of the ductal tree during mammary gland development. To define the steps in the human mammary lineage at which CD10 acts, we have developed an in vitro assay for human mammary lineage progression. We show that sorting for CD10 and EpCAM cleanly separates progenitors from differentiated luminal cells and that the CD10-high EpCAM-low population is enriched for early common progenitor and mammosphere-forming cells. We also show that sorting for CD10 enriches sphere-forming cells from other tissue types, suggesting that it may provide a simple tool to identify stem or progenitor populations in tissues for which lineage studies are not currently possible. We demonstrate that the protease activity of CD10 and the adhesion function of beta1-integrin are required to prevent differentiation of mammary progenitors. Taken together, our data suggest that integrin-mediated contact with the basement membrane and cleavage of signaling factors by CD10 are key elements in the niche that maintains the progenitor and stem cell pools in the mammary lineage.


Assuntos
Glândulas Mamárias Humanas/enzimologia , Neprilisina/metabolismo , Células-Tronco/enzimologia , Biomarcadores , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Humanos , Integrina beta1/metabolismo , Glândulas Mamárias Humanas/citologia , Células-Tronco/citologia
5.
Science ; 356(6336)2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28450583

RESUMO

To produce seeds, flowering plants need to specify somatic cells to undergo meiosis. Here, we reveal a regulatory cascade that controls the entry into meiosis starting with a group of redundantly acting cyclin-dependent kinase (CDK) inhibitors of the KIP-RELATED PROTEIN (KRP) class. KRPs function by restricting CDKA;1-dependent inactivation of the Arabidopsis Retinoblastoma homolog RBR1. In rbr1 and krp triple mutants, designated meiocytes undergo several mitotic divisions, resulting in the formation of supernumerary meiocytes that give rise to multiple reproductive units per future seed. One function of RBR1 is the direct repression of the stem cell factor WUSCHEL (WUS), which ectopically accumulates in meiocytes of triple krp and rbr1 mutants. Depleting WUS in rbr1 mutants restored the formation of only a single meiocyte.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Proteínas de Homeodomínio/metabolismo , Óvulo Vegetal/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas de Homeodomínio/genética , Meiose/genética , Meiose/fisiologia , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo
6.
Stem Cell Reports ; 4(2): 239-54, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25601208

RESUMO

Understanding the mechanisms of cancer initiation will help to prevent and manage the disease. At present, the role of the breast microenvironment in transformation remains unknown. As BMP2 and BMP4 are important regulators of stem cells and their niches in many tissues, we investigated their function in early phases of breast cancer. BMP2 production by tumor microenvironment appeared to be specifically upregulated in luminal tumors. Chronic exposure of immature human mammary epithelial cells to high BMP2 levels initiated transformation toward a luminal tumor-like phenotype, mediated by the receptor BMPR1B. Under physiological conditions, BMP2 controlled the maintenance and differentiation of early luminal progenitors, while BMP4 acted on stem cells/myoepithelial progenitors. Our data also suggest that microenvironment-induced overexpression of BMP2 may result from carcinogenic exposure. We reveal a role for BMP2 and the breast microenvironment in the initiation of stem cell transformation, thus providing insight into the etiology of luminal breast cancer.


Assuntos
Proteína Morfogenética Óssea 2/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Amplificação de Genes , Células-Tronco Neoplásicas/metabolismo , Nicho de Células-Tronco/genética , Proteína Morfogenética Óssea 2/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinógenos/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Transdução de Sinais , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA