Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 595(7866): 295-302, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34079130

RESUMO

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene HBB1. We used a custom adenine base editor (ABE8e-NRCH)2,3 to convert the SCD allele (HBBS) into Makassar ß-globin (HBBG), a non-pathogenic variant4,5. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBBS to HBBG. Sixteen weeks after transplantation of edited human HSPCs into immunodeficient mice, the frequency of HBBG was 68% and hypoxia-induced sickling of bone marrow reticulocytes had decreased fivefold, indicating durable gene editing. To assess the physiological effects of HBBS base editing, we delivered ABE8e-NRCH and guide RNA into HSPCs from a humanized SCD mouse6 and then transplanted these cells into irradiated mice. After sixteen weeks, Makassar ß-globin represented 79% of ß-globin protein in blood, and hypoxia-induced sickling was reduced threefold. Mice that received base-edited HSPCs showed near-normal haematological parameters and reduced splenic pathology compared to mice that received unedited cells. Secondary transplantation of edited bone marrow confirmed that the gene editing was durable in long-term haematopoietic stem cells and showed that HBBS-to-HBBG editing of 20% or more is sufficient for phenotypic rescue. Base editing of human HSPCs avoided the p53 activation and larger deletions that have been observed following Cas9 nuclease treatment. These findings point towards a one-time autologous treatment for SCD that eliminates pathogenic HBBS, generates benign HBBG, and minimizes the undesired consequences of double-strand DNA breaks.


Assuntos
Adenina/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/terapia , Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Animais , Antígenos CD34/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Modelos Animais de Doenças , Feminino , Terapia Genética , Genoma Humano/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Masculino , Camundongos
2.
Nat Chem Biol ; 17(3): 317-325, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432237

RESUMO

Epitope-specific enzymes are powerful tools for site-specific protein modification but generally require genetic manipulation of the target protein. Here, we describe the laboratory evolution of the bacterial transpeptidase sortase A to recognize the LMVGG sequence in endogenous amyloid-ß (Aß) protein. Using a yeast display selection for covalent bond formation, we evolved a sortase variant that prefers LMVGG substrates from a starting enzyme that prefers LPESG substrates, resulting in a >1,400-fold change in substrate preference. We used this evolved sortase to label endogenous Aß in human cerebrospinal fluid, enabling the detection of Aß with sensitivities rivaling those of commercial assays. The evolved sortase can conjugate a hydrophilic peptide to Aß42, greatly impeding the ability of the resulting protein to aggregate into higher-order structures. These results demonstrate laboratory evolution of epitope-specific enzymes toward endogenous targets as a strategy for site-specific protein modification without target gene manipulation and enable potential future applications of sortase-mediated labeling of Aß peptides.


Assuntos
Aminoaciltransferases/farmacologia , Peptídeos beta-Amiloides/química , Proteínas de Bactérias/farmacologia , Cisteína Endopeptidases/farmacologia , Fragmentos de Peptídeos/química , Agregados Proteicos/efeitos dos fármacos , Sequência de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
3.
Nat Chem Biol ; 16(6): 610-619, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32444838

RESUMO

Continuous directed evolution methods allow the key steps of evolution-gene diversification, selection, and replication-to proceed in the laboratory with minimal researcher intervention. As a result, continuous evolution can find solutions much more quickly than traditional discrete evolution methods. Continuous evolution also enables the exploration of longer and more numerous evolutionary trajectories, increasing the likelihood of accessing solutions that require many steps through sequence space and greatly facilitating the iterative refinement of selection conditions and targeted mutagenesis strategies. Here we review the historical advances that have expanded continuous evolution from its earliest days as an experimental curiosity to its present state as a powerful and surprisingly general strategy for generating tailor-made biomolecules, and discuss more recent improvements with an eye to the future.


Assuntos
Evolução Molecular , Mutagênese , Proteínas/genética , Allolevivirus/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Evolução Molecular Direcionada , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Engenharia de Proteínas
4.
Biochemistry ; 58(33): 3527-3536, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31386347

RESUMO

CPAF (chlamydial protease-like activity factor) is a Chlamydia trachomatis protease that is translocated into the host cytosol during infection. CPAF activity results in dampened host inflammation signaling, cytoskeletal remodeling, and suppressed neutrophil activation. Although CPAF is an emerging antivirulence target, its catalytic mechanism has been unexplored to date. Steady state kinetic parameters were obtained for recombinant CPAF with vimentin-derived peptide substrates using a high-performance liquid chromatography-based discontinuous assay (kcat = 45 ± 0.6 s-1; kcat/Km = 0.37 ± 0.02 µM-1 s-1) or a new fluorescence-based continuous assay (kcat = 23 ± 0.7 s-1; kcat/Km = 0.29 ± 0.03 µM-1 s-1). Residues H105, S499, E558, and newly identified D103 were found to be indispensable for autoproteolytic processing by mutagenesis, while participation of C500 was ruled out despite its proximity to the S499 nucleophile. Pre-steady state kinetics indicated a burst kinetic profile, with fast acylation (kacyl = 110 ± 2 s-1) followed by slower, partially rate-limiting deacylation (kdeacyl = 57 ± 1 s-1). Both kcat- and kcat/Km-pH profiles showed single acidic limb ionizations with pKa values of 6.2 ± 0.1 and 6.5 ± 0.1, respectively. A forward solvent deuterium kinetic isotope effect of 2.6 ± 0.1 was observed for D2Okcatapp, but a unity effect was found for D2Okcat/Kmapp. The kcat proton inventory was linear, indicating transfer of a single proton in the rate-determining transition state, most likely from H105. Collectively, these data provide support for the classification of CPAF as a serine protease and provide a mechanistic foundation for the future design of inhibitors.


Assuntos
Chlamydia trachomatis/enzimologia , Endopeptidases/metabolismo , Serina Proteases/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cinética , Proteólise , Fatores de Virulência
5.
Nat Biotechnol ; 40(5): 731-740, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34887556

RESUMO

The targeted deletion, replacement, integration or inversion of genomic sequences could be used to study or treat human genetic diseases, but existing methods typically require double-strand DNA breaks (DSBs) that lead to undesired consequences, including uncontrolled indel mixtures and chromosomal abnormalities. Here we describe twin prime editing (twinPE), a DSB-independent method that uses a prime editor protein and two prime editing guide RNAs (pegRNAs) for the programmable replacement or excision of DNA sequences at endogenous human genomic sites. The two pegRNAs template the synthesis of complementary DNA flaps on opposing strands of genomic DNA, which replace the endogenous DNA sequence between the prime-editor-induced nick sites. When combined with a site-specific serine recombinase, twinPE enabled targeted integration of gene-sized DNA plasmids (>5,000 bp) and targeted sequence inversions of 40 kb in human cells. TwinPE expands the capabilities of precision gene editing and might synergize with other tools for the correction or complementation of large or complex human pathogenic alleles.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sequência de Bases , Inversão Cromossômica , DNA/genética , Edição de Genes/métodos , Humanos , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA