Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Hum Genet ; 111(8): 1588-1604, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047730

RESUMO

Histone deacetylase 3 (HDAC3) is a crucial epigenetic modulator essential for various developmental and physiological functions. Although its dysfunction is increasingly recognized in abnormal phenotypes, to our knowledge, there have been no established reports of human diseases directly linked to HDAC3 dysfunction. Using trio exome sequencing and extensive phenotypic analysis, we correlated heterozygous de novo variants in HDAC3 with a neurodevelopmental disorder having variable clinical presentations, frequently associated with intellectual disability, developmental delay, epilepsy, and musculoskeletal abnormalities. In a cohort of six individuals, we identified missense variants in HDAC3 (c.277G>A [p.Asp93Asn], c.328G>A [p.Ala110Thr], c.601C>T [p.Pro201Ser], c. 797T>C [p.Leu266Ser], c.799G>A [p.Gly267Ser], and c.1075C>T [p.Arg359Cys]), all located in evolutionarily conserved sites and confirmed as de novo. Experimental studies identified defective deacetylation activity in the p.Asp93Asn, p.Pro201Ser, p.Leu266Ser, and p.Gly267Ser variants, positioned near the enzymatic pocket. In addition, proteomic analysis employing co-immunoprecipitation revealed that the disrupted interactions with molecules involved in the CoREST and NCoR complexes, particularly in the p.Ala110Thr variant, consist of a central pathogenic mechanism. Moreover, immunofluorescence analysis showed diminished nuclear to cytoplasmic fluorescence ratio in the p.Ala110Thr, p.Gly267Ser, and p.Arg359Cys variants, indicating impaired nuclear localization. Taken together, our study highlights that de novo missense variants in HDAC3 are associated with a broad spectrum of neurodevelopmental disorders, which emphasizes the complex role of HDAC3 in histone deacetylase activity, multi-protein complex interactions, and nuclear localization for proper physiological functions. These insights open new avenues for understanding the molecular mechanisms of HDAC3-related disorders and may inform future therapeutic strategies.


Assuntos
Epigênese Genética , Histona Desacetilases , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Masculino , Feminino , Pré-Escolar , Criança , Deficiência Intelectual/genética , Sequenciamento do Exoma , Adolescente , Deficiências do Desenvolvimento/genética , Fenótipo , Lactente , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo
2.
Am J Hum Genet ; 111(1): 96-118, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181735

RESUMO

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Assuntos
Proteínas de Drosophila , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Alelos , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular , Transtornos do Neurodesenvolvimento/genética , Proteínas Tirosina Fosfatases
3.
Epilepsia ; 65(5): 1428-1438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470175

RESUMO

OBJECTIVE: To delineate the comprehensive phenotypic spectrum of SYNGAP1-related disorder in a large patient cohort aggregated through a digital registry. METHODS: We obtained de-identified patient data from an online registry. Data were extracted from uploaded medical records. We reclassified all SYNGAP1 variants using American College of Medical Genetics criteria and included patients with pathogenic/likely pathogenic (P/LP) single nucleotide variants or microdeletions incorporating SYNGAP1. We analyzed neurodevelopmental phenotypes, including epilepsy, intellectual disability (ID), autism spectrum disorder (ASD), behavioral disorders, and gait dysfunction for all patients with respect to variant type and location within the SynGAP1 protein. RESULTS: We identified 147 patients (50% male, median age 8 years) with P/LP SYNGAP1 variants from 151 individuals with data available through the database. One hundred nine were truncating variants and 22 were missense. All patients were diagnosed with global developmental delay (GDD) and/or ID, and 123 patients (84%) were diagnosed with epilepsy. Of those with epilepsy, 73% of patients had GDD diagnosed before epilepsy was diagnosed. Other prominent features included autistic traits (n = 100, 68%), behavioral problems (n = 100, 68%), sleep problems (n = 90, 61%), anxiety (n = 35, 24%), ataxia or abnormal gait (n = 69, 47%), sensory problems (n = 32, 22%), and feeding difficulties (n = 69, 47%). Behavioral problems were more likely in those patients diagnosed with anxiety (odds ratio [OR] 3.6, p = .014) and sleep problems (OR 2.41, p = .015) but not necessarily those with autistic traits. Patients with variants in exons 1-4 were more likely to have the ability to speak in phrases vs those with variants in exons 5-19, and epilepsy occurred less frequently in patients with variants in the SH3 binding motif. SIGNIFICANCE: We demonstrate that the data obtained from a digital registry recapitulate earlier but smaller studies of SYNGAP1-related disorder and add additional genotype-phenotype relationships, validating the use of the digital registry. Access to data through digital registries broadens the possibilities for efficient data collection in rare diseases.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Fenótipo , Proteínas Ativadoras de ras GTPase , Humanos , Masculino , Feminino , Criança , Epilepsia/genética , Proteínas Ativadoras de ras GTPase/genética , Pré-Escolar , Adolescente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/epidemiologia , Sistema de Registros , Deficiência Intelectual/genética , Deficiência Intelectual/epidemiologia , Adulto , Adulto Jovem , Deficiências do Desenvolvimento/genética , Lactente , Estudos de Coortes , Transtorno Autístico/genética
6.
Genet Med ; : 101215, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39011767
7.
Neurology ; 102(3): e208119, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38175993

RESUMO

Many physicians and researchers are familiar with the tragic phenomenon known as sudden infant death syndrome (SIDS), the leading cause of postneonatal mortality in high-resource countries. A less familiar category of unexplained deaths is the problem of sudden unexplained death in childhood (SUDC), a more rare and unusual presentation of sudden death in children who are no longer infants and whose reasons for death defy explanation. A substantial body of research in SUDC now supports the possibility of an overlap with epilepsy and associated sudden death in that context (SUDEP). Stemming from the first contemporary reports of SUDC, we have learned that a disproportionate number of these children have personal and/or family histories of febrile seizures,1 in many cases, inherited in an autosomal dominant manner.2 Their febrile seizures can be associated with abnormalities in their temporal lobes,3,4 including bilamination of the dentate gyrus and other findings conventionally associated with temporal lobe epilepsy, implicating potential epilepsy-related mechanisms.5 Further evaluation of this emerging epilepsy-related phenotype has led to the identification of genetic variants in SCN1A and other epilepsy-associated genes,6,7 moving SUDC away from being considered an unexplained phenomenon to one where the working hypothesis includes a role for genetic predisposition and epilepsy-like mechanisms in the deaths, even without an established history of epilepsy. Nonetheless, because the terminal events of these seemingly healthy children are unexpected and unobserved, the clinical manifestations of whatever underlying vulnerabilities exist-generally discovered posthumously-remain a matter of speculation.


Assuntos
Epilepsia , Convulsões Febris , Morte Súbita Inesperada na Epilepsia , Criança , Humanos , Lactente , Morte Súbita/etiologia , Epilepsia/genética , Epilepsia/complicações , Convulsões Febris/genética , Lobo Temporal
8.
bioRxiv ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39149401

RESUMO

Identifying new, more efficacious anti-seizure medications (ASMs) is challenging, partly due to limitations in animal-based assays. Zebrafish ( Danio rerio ) can serve as a model of chemical and genetic seizures, but methods for detecting seizure-like activity in zebrafish, though powerful, have been hampered by low sensitivity (locomotor/behavioral assays) or low-throughput (tectal electrophysiology or calcium fluorescence microscopy). To address these issues, we developed a novel approach to assay seizure-like activity using combined locomotor and calcium fluorescence features, measured simultaneously from unrestrained larval zebrafish using a 96-well fluorescent plate reader. Using custom software to track fish movement and changes in fluorescence (deltaF/F0) from high-speed time-series (12.6Hz), we trained logistic classifiers using elastic net regression to distinguish seizure-like activity from non-seizure related changes based on event-specific and subject-specific features in response to the GABA A R antagonist, pentylenetetrazole (PTZ). We demonstrate that a classifier trained on combined movement and fluorescence data achieves high accuracy ("PTZ M+F"; area-under-curve receiver-operator characteristic (AUC-ROC): 0.98; F1 score: 0.912) and out-performs classifiers trained on movement ("PTZ M"; AUC-ROC: 0.9, F1: 0.9) or fluorescence features alone ("PTZ F"; AUC-ROC 0.96; F1: 0.87). The rate of classified seizure-like events increases as a dose-response to PTZ (serial dose escalation, 0, 2.5mM, 15mM) and is strongly suppressed by ASM treatment (valproic acid, VPA; tiagabine, TGB). At high-dose PTZ, we show that VPA reduces seizure-like activity defined by either "PTZ M+F" or "PTZ M" classifiers. Meanwhile, TGB selectively reduces events defined by the "PTZ M+F" classifier, paralleling previous reports that TGB reduces electrographic but not locomotor seizures and highlighting the potential for our approach to combine features of previously orthogonal assays. Using ASM benchmark data, we employ bootstrap simulation to calculate the expected statistical power of our method as a function of sample size. We demonstrate that anti-seizure responses (robust strictly standardized mean difference, RSSMD, versus control) with magnitudes similar to those associated with VPA or TGB can be reliably detected (true positive rate (TPR) > 90%) with as few as N=4 biological replicates per group, while maintaining a 5% false positive rate. In a prospective test screen with 3-6 replicates per group and on-plate controls, the anti-seizure effect of 4 out of 5 tested ASMs (CBZ, LEV, LZP, TGB) was detected. In summary, we demonstrate a simple high-throughput approach to whole organism anti-seizure phenotyping combining two previously reported metrics to facilitate screens for novel anti-seizure interventions in zebrafish.

9.
Pediatr Neurol ; 157: 79-86, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901369

RESUMO

BACKGROUND: Although there are established connections between genetic epilepsies and neurodevelopmental disorders like intellectual disability, the presence of cerebral palsy (CP) in genetic epilepsies is undercharacterized. We performed a retrospective chart review evaluating the motor phenotype of patients with genetic epilepsies. METHODS: Patients were ascertained through a research exome sequencing study to identify genetic causes of epilepsy. We analyzed data from the first 100 individuals with molecular diagnoses. We determined motor phenotype by reviewing medical records for muscle tone and motor function data. We characterized patients according to CP subtypes: spastic diplegic, spastic quadriplegic, spastic hemiplegic, dyskinetic, hypotonic-ataxic. RESULTS: Of 100 individuals with genetic epilepsies, 14% had evidence of possible CP, including 5% characterized as hypotonic-ataxic CP, 5% spastic quadriplegic CP, 3% spastic diplegic CP, and 1% hemiplegic CP. Presence of CP did not correlate with seizure onset age (P = 0.63) or seizure control (P = 0.07). CP occurred in 11% (n = 3 of 27) with focal epilepsy, 9% (n = 5 of 54) with generalized epilepsy, and 32% (n = 6 of 19) with combined focal/generalized epilepsy (P = 0.06). CONCLUSIONS: In this retrospective analysis of patients with genetic epilepsies, we identified a substantial portion with CP phenotypes, representing an under-recognized comorbidity. These findings underscore the many neurodevelopmental features associated with neurogenetic conditions, regardless of the feature for which they were ascertained for sequencing. Detailed motor phenotyping is needed to determine the prevalence of CP and its subtypes among genetic epilepsies. These motor phenotypes require clinical management and represent important targeted outcomes in trials for patients with genetic epilepsies.


Assuntos
Paralisia Cerebral , Epilepsia , Fenótipo , Humanos , Masculino , Feminino , Criança , Estudos Retrospectivos , Pré-Escolar , Adolescente , Epilepsia/genética , Epilepsia/fisiopatologia , Paralisia Cerebral/genética , Paralisia Cerebral/fisiopatologia , Adulto , Adulto Jovem , Lactente
10.
Ann Clin Transl Neurol ; 11(2): 251-262, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168508

RESUMO

OBJECTIVE: Evaluation of the clinical utility of a genetic diagnosis in CP remains limited. We aimed to characterize the clinical utility of a genetic diagnosis by exome sequencing (ES) in patients with CP and related motor disorders. METHODS: We enrolled participants with CP and "CP masquerading" conditions in an institutional ES initiative. In those with genetic diagnoses who had clinical visits to discuss results, we retrospectively reviewed medical charts, evaluating recommendations based on the genetic diagnosis pertaining to medication intervention, surveillance initiation, variant-specific testing, and patient education. RESULTS: We included 30 individuals with a molecular diagnosis and clinical follow-up. Nearly all (28 out of 30) had clinical impact resulting from the genetic diagnosis. Medication interventions included recommendation of mitochondrial multivitamin supplementation (6.67%, n = 2), ketogenic diet (3.33%, n = 1), and fasting avoidance (3.33%, n = 1). Surveillance-related actions included recommendations for investigating systemic complications (40%, n = 12); referral to new specialists to screen for systemic manifestations (33%, n = 10); continued follow-up with established specialists to focus on specific manifestations (16.67%, n = 5); referral to clinical genetics (16.67%, n = 5) to oversee surveillance recommendations. Variant-specific actions included carrier testing (10%, n = 3) and testing of potentially affected relatives (3.33%, n = 1). Patient education-specific actions included referral to experts in the genetic disorder (30%, n = 9); and counseling about possible changes in prognosis, including recognition of disease progression and early mortality (36.67%, n = 11). INTERPRETATION: This study highlights the clinical utility of a genetic diagnosis for CP and "CP masquerading" conditions, evident by medication interventions, surveillance impact, family member testing, and patient education, including possible prognostic changes.


Assuntos
Paralisia Cerebral , Dieta Cetogênica , Transtornos Motores , Humanos , Estudos Retrospectivos , Cognição
11.
Ann Clin Transl Neurol ; 11(6): 1643-1647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711225

RESUMO

Children with developmental and epileptic encephalopathies often present with co-occurring dyskinesias. Pathogenic variants in ARX cause a pleomorphic syndrome that includes infantile epilepsy with a variety of movement disorders ranging from focal hand dystonia to generalized dystonia with frequent status dystonicus. In this report, we present three patients with severe movement disorders as part of ARX-associated epilepsy-dyskinesia syndrome, including a patient with a novel pathogenic missense variant (p.R371G). These cases illustrate diagnostic and management challenges of ARX-related disorder and shed light on broader challenges concerning epilepsy-dyskinesia syndromes.


Assuntos
Proteínas de Homeodomínio , Transtornos dos Movimentos , Fatores de Transcrição , Humanos , Masculino , Feminino , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/etiologia , Pré-Escolar , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Lactente , Mutação de Sentido Incorreto , Criança
12.
medRxiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39148850

RESUMO

Importance: Epilepsy is the most common neurological disorder of childhood. Identifying genetic diagnoses underlying epilepsy is critical to developing effective therapies and improving outcomes. Most children with non-acquired (unexplained) epilepsy remain genetically unsolved, and the utility of genome sequencing after nondiagnostic exome sequencing is unknown. Objective: To determine the diagnostic (primary) and clinical (secondary) utility of genome sequencing after nondiagnostic exome sequencing in individuals with unexplained pediatric epilepsy. Design: This cohort study performed genome sequencing and comprehensive analyses for 125 participants and available biological parents enrolled from August 2018 to May 2023, with data analysis through April 2024 and clinical return of diagnostic and likely diagnostic genetic findings. Clinical utility was evaluated. Setting: Pediatric referral center. Participants: Participants with unexplained pediatric epilepsy and previous nondiagnostic exome sequencing; biological parents when available. Exposures: Short-read genome sequencing and analysis. Main Outcomes and Measures: Primary outcome measures were the diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding, and the unique diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding that required genome sequencing. The secondary outcome measure was clinical utility of genome sequencing, defined as impact on evaluation, treatment, or prognosis for the participant or their family. Results: 125 participants (58 [46%] female) were enrolled with median age at seizure onset 3 [IQR 1.25, 8] years, including 44 (35%) with developmental and epileptic encephalopathies. The diagnostic yield of genome sequencing was 7.2% (9/125), with diagnostic genetic findings in five cases and likely diagnostic genetic findings in four cases. Among the solved cases, 7/9 (78%) required genome sequencing for variant detection (small copy number variant, three noncoding variants, and three difficult to sequence small coding variants), for a unique diagnostic yield of genome sequencing of 5.6% (7/125). Clinical utility was documented for 4/9 solved cases (44%). Conclusions and Relevance: These findings suggest that genome sequencing can have diagnostic and clinical utility after nondiagnostic exome sequencing and should be considered for patients with unexplained pediatric epilepsy.

13.
iScience ; 27(7): 110172, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39021799

RESUMO

Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2,200 candidate epilepsy-associated genes, of which 48 were developed into stable loss-of-function (LOF) zebrafish models. Of those 48, evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, and wnt8b). Further characterization provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Further, RNA sequencing (RNA-seq) revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes.

14.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370728

RESUMO

Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2200 candidate epilepsy-associated genes, of which 81 were determined suitable for the generation of loss-of-function zebrafish models via CRISPR/Cas9 gene editing. Of those 81 crispants, 48 were successfully established as stable mutant lines and assessed for seizure-like swim patterns in a primary F2 screen. Evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, wnt8b) of the 48 mutant lines assessed. Further characterization of those 5 lines provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Furthermore, RNAseq revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes.

15.
Neurol Genet ; 10(1): e200117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149038

RESUMO

Objectives: Brain-limited pathogenic somatic variants are associated with focal pediatric epilepsy, but reliance on resected brain tissue samples has limited our ability to correlate epileptiform activity with abnormal molecular pathology. We aimed to identify the pathogenic variant and map variant allele fractions (VAFs) across an abnormal region of epileptogenic brain in a patient who underwent stereoelectroencephalography (sEEG) and subsequent motor-sparing left frontal disconnection. Methods: We extracted genomic DNA from peripheral blood, brain tissue resected from peri-sEEG electrode regions, and microbulk brain tissue adherent to sEEG electrodes. Samples were mapped based on an anatomic relationship with the presumed seizure onset zone (SOZ). We performed deep panel sequencing of amplified and unamplified DNA to identify pathogenic variants with subsequent orthogonal validation. Results: We detect a pathogenic somatic PIK3CA variant, c.1624G>A (p.E542K), in the brain tissue samples, with VAF inversely correlated with distance from the SOZ. In addition, we identify this variant in amplified electrode-derived samples, albeit with lower VAFs. Discussion: We demonstrate regional mosaicism across epileptogenic tissue, suggesting a correlation between variant burden and SOZ. We also validate a pathogenic variant from individual amplified sEEG electrode-derived brain specimens, although further optimization of techniques is required.

16.
medRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39108522

RESUMO

Somatic mosaic variants contribute to focal epilepsy, but genetic analysis has been limited to patients with drug-resistant epilepsy (DRE) who undergo surgical resection, as the variants are mainly brain-limited. Stereoelectroencephalography (sEEG) has become part of the evaluation for many patients with focal DRE, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of potentially clinically relevant mosaic variants in DNA extracted from trace brain tissue on individual sEEG electrodes. We enrolled a prospective cohort of eleven pediatric patients with DRE who had sEEG electrodes implanted for invasive monitoring, one of whom was previously reported. We extracted unamplified DNA from the trace brain tissue on each sEEG electrode and also performed whole-genome amplification for each sample. We extracted DNA from resected brain tissue and blood/saliva samples where available. We performed deep panel and exome sequencing on a subset of samples from each case and analysis for potentially clinically relevant candidate germline and mosaic variants. We validated candidate mosaic variants using amplicon sequencing and assessed the variant allele fraction (VAF) in amplified and unamplified electrode-derived DNA and across electrodes. We extracted DNA from >150 individual electrodes from 11 individuals and obtained higher concentrations of whole-genome amplified vs unamplified DNA. Immunohistochemistry confirmed the presence of neurons in the brain tissue on electrodes. Deep sequencing and analysis demonstrated similar depth of coverage between amplified and unamplified samples but significantly more called mosaic variants in amplified samples. In addition to the mosaic PIK3CA variant detected in a previously reported case from our group, we identified and validated four potentially clinically relevant mosaic variants in electrode-derived DNA in three patients who underwent laser ablation and did not have resected brain tissue samples available. The variants were detected in both amplified and unamplified electrode-derived DNA, with higher VAFs observed in DNA from electrodes in closest proximity to the electrical seizure focus in some cases. This study demonstrates that mosaic variants can be identified and validated from DNA extracted from trace brain tissue on individual sEEG electrodes in patients with drug-resistant focal epilepsy and in both amplified and unamplified electrode-derived DNA samples. Our findings support a relationship between the extent of regional genetic abnormality and electrophysiology, and suggest that with further optimization, this minimally invasive diagnostic approach holds promise for advancing precision medicine for patients with DRE as part of the surgical evaluation.

17.
NPJ Genom Med ; 9(1): 27, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582909

RESUMO

Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-driven ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear. We identified reports published from 2017 to 2021 in 10 genetics journals of novel Mendelian disorders. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries. In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the 6 domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and "behavioural issues", or about the type/nature of feeding problems. Follow-up reports (n = 95) rarely contributed this additional phenotype data. In summary, phenotype information relevant to clinical management, genetic counselling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. The PHELIX (PHEnotype LIsting fiX) reporting guideline checklists were developed to improve phenotype reporting in the genomic era.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA