Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochim Biophys Acta Proteins Proteom ; 1869(6): 140623, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33607274

RESUMO

Ovarian cancer (OvCA) is the most lethal neoplasia among gynecologic malignancies and faces high rates of new cases particularly in South America. In special, the High Grade Serous Ovarian Carcinoma (HGSC) presents very poor prognosis with deaths caused mainly by metastasis. Among several mechanisms involved in metastasis, the Epithelial to Mesenchymal Transition (EMT) molecular reprogramming represents a model for latest stages of cancer progression. EMT promotes important cellular changes in cellular adhesion and cell-cell communication, which particularly depends on the paracrine signaling from neighbor cells. Considering the importance of cellular communication during EMT and metastasis, here we analyzed the changes in the secretome of the ovarian cancer cell line Caov-3 induced to EMT by Epidermal Growth Factor (EGF). Using a combination of GEL-LC-MS/MS and stable isotopic metabolic labelling (SILAC), we identified up-regulated candidates during EMT as a starting point to identify relevant proteins for HGSC. Based on public databases, our candidate proteins were validated and prioritized for further analysis. Importantly, several of the protein candidates were associated with cellular vesicles, which are important to the cell-cell communication and metastasis. Furthermore, the association of candidate proteins with gene expression data uncovered a subset of proteins correlated with the mesenchymal subtype of ovarian cancer. Based on this relevant molecular signature for aggressive ovarian cancer, supported by protein and gene expression data, we developed a targeted proteomic method to evaluate individual OvCA clinical samples. The quantitative information obtained for 33 peptides, representative of 18 proteins, was able to segregate HGSC from other tumor types. Our study highlighted the richness of the secretome and EMT to reveal relevant proteins for HGSC, which could be used in further studies and larger patient cohorts as a potential stratification signature for ovarian cancer tumor that could guide clinical conduct for patient treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/patologia , Fator de Crescimento Epidérmico/farmacologia , Neoplasias Ovarianas/patologia , Proteômica/métodos , Regulação para Cima , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida , Cistadenocarcinoma Seroso/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Marcação por Isótopo , Invasividade Neoplásica , Estadiamento de Neoplasias , Neoplasias Ovarianas/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Espectrometria de Massas em Tandem
2.
Mol Omics ; 15(5): 316-330, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31429845

RESUMO

The main cause of death in cancer is the spread, or metastasis, of cancer cells to distant organs with consequent tumor formation. Additionally, metastasis is a process that demands special attention, as the cellular transformations make cancer at this stage very difficult or occasionally even impossible to be cured. The main process that converts epithelial tumor cells to mesenchymal-like metastatic cells is the Epithelial to Mesenchymal Transition (EMT). This process allows stationary and polarized epithelial cells, which are connected laterally to several types of junctions as well as the basement membrane, to undergo multiple biochemical changes that enable disruption of cell-cell adherence and apical-basal polarity. Moreover, the cells undergo important reprogramming to remodel the cytoskeleton and acquire mesenchymal characteristics such as enhanced migratory capacity, invasiveness, elevated resistance to apoptosis and a large increase in the production of ECM components. As expected, the alterations of the protein complement are extensive and complex, and thus exploring this by proteomic approaches is of particular interest. Here we review the overall findings of proteome modifications during EMT, mainly focusing on molecular signatures observed in multiple proteomic studies as well as coordinated pathways, cellular processes and their clinical relevance for altered proteins. As a result, an interesting set of proteins is highlighted as potential targets to be further investigated in the context of EMT, metastasis and cancer progression.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Proteoma , Proteômica , Transformação Celular Neoplásica/metabolismo , Células Epiteliais , Regulação Neoplásica da Expressão Gênica , Humanos
3.
Transl Res ; 206: 71-90, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30529050

RESUMO

Despite all the advances in understanding the mechanisms involved in ovarian cancer (OC) development, many aspects still need to be unraveled and understood. Tumor markers (TMs) are of special interest in this disease. Some aspects of clinical management of OC might be improved by the use of validated TMs, such as differentiating subtypes, defining the most appropriate treatment, monitoring the course of the disease, or predicting clinical outcome. The Food and Drug Administration (FDA) has approved a few TMs for OC: CA125 (cancer antigen 125; monitoring), HE4 (Human epididymis protein; monitoring), ROMA (Risk Of Malignancy Algorithm; HE4+CA125; prediction of malignancy) and OVA1 (Vermillion's first-generation Multivariate Index Assay [MIA]; prediction of malignancy). Proteomics can help advance the research in the field of TMs for OC. A variety of biological materials are being used in proteomic analysis, among them tumor tissues, interstitial fluids, tumor fluids, ascites, plasma, and ovarian cancer cell lines. However, the discovery and validation of new TMs for OC is still very challenging. The enormous heterogeneity of histological types of samples and the individual variability of patients (lifestyle, comorbidities, drug use, and family history) are difficult to overcome in research protocols. In this work, we sought to gather relevant information regarding TMs, OC, biological samples for proteomic analysis, as well as markers and algorithms approved by the FDA for use in clinical routine.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ovarianas/metabolismo , Proteômica , Feminino , Humanos
4.
Mutat Res ; 629(1): 14-23, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17276134

RESUMO

The use of medicinal plants to combat diseases has increased in the last years despite the little information available with regard to the possible health risks they represent. The aim of the present study was to determine in vitro the possible clastogenic, apoptotic and cytotoxic effects of the active principle of Croton cajucara, trans-dehydrocrotonin (DCTN), and determine its protective effect against three mutagenic agents using the micronucleus test (MN) and apoptosis index in CHO-K1 cells. Three DNA damage inducing agents were utilized in the clastogenicity and anticlastogenicity tests (methylmethane sulfonate (MMS), mitomycin C (MMC) and doxorubicin (DXR); a negative control (PBS) and solvent control were also included. DCTN at concentrations of 400, 320, 240, 160 and 80microM did not show clastogenic activity in cultured CHO-K1 cells in the micronucleus test, did not induce apoptosis and showed negligible cytotoxicity in all cases. DCTN at concentrations of 240 and 400microM was tested for protective activity using three treatment protocols in relation to positive controls: pre-treatment, simultaneous treatment and post-treatment. The micronucleus test showed a protective effect for DCTN which varied among the different treatment protocols and with regard to the different DNA damage inducing agents. In the apoptosis test, DCTN was seen to have a protective effect under the following conditions: (I) at both concentrations in relation to MMS, in all three treatment protocols; (II) at both concentrations against damage caused by MMC with pre-treatment and at the higher concentration with simultaneous treatment; (III) at both concentrations against DXR with simultaneous treatment. Therefore, DCTN itself is not a clastogenic or cytotoxic substance, and does not induce apoptosis the in vitro system used. These results together with findings reported for DCTN in vivo, support the indication of this active principle at these concentrations for therapeutic use.


Assuntos
Antimutagênicos/farmacologia , Apoptose , Croton/química , Diterpenos Clerodânicos/farmacologia , Testes para Micronúcleos/métodos , Plantas Medicinais/química , Animais , Antimutagênicos/química , Antimutagênicos/isolamento & purificação , Células CHO , Cricetinae , Cricetulus , Diterpenos Clerodânicos/química , Relação Dose-Resposta a Droga , Doxorrubicina/toxicidade , Técnicas In Vitro , Metanossulfonato de Metila/toxicidade , Mitomicina/toxicidade , Estrutura Molecular , Mutagênicos/toxicidade
5.
J Proteomics ; 151: 2-11, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27394697

RESUMO

Epithelial to mesenchymal transition (EMT) is a well-orchestrated process that culminates with loss of epithelial phenotype and gain of a mesenchymal and migratory phenotype. EMT enhances cancer cell invasiveness and drug resistance, favoring metastasis. Dysregulation of transcription factors, signaling pathways, miRNAs and growth factors including EGF, TGF-beta and HGF can trigger EMT. In ovarian cancer, overexpression of the EGFR family is associated with more aggressive clinical behavior. Here, the ovarian adenocarcinoma cell line Caov-3 was induced to EMT with EGF in order to identify specific mechanisms controlled by this process. Caov-3 cells induced to EMT were thoroughly validated and a combination of subcellular proteome enrichment, GEL-LC-MS/MS and SILAC strategy allowed consistent proteome identification and quantitation. Protein network analysis of differentially expressed proteins highlighted regulation of metabolism and cell cycle. Activation of relevant signaling pathways, such as PI3K/Akt/mTOR and Ras/Erk MAPK, in response to EGF-induced EMT was validated. Also, EMT did not affected the proliferation rate of Caov-3 cells, but led to cell cycle arrest in G1 phase regulated by increased levels of p21Waf1/Cip1, independently of p53. Furthermore, a decrease in G1 and G2 checkpoint proteins was observed, supporting the involvement of EGF-induced EMT in cell cycle control. BIOLOGICAL SIGNIFICANCE: Cancer is a complex multistep process characterized by accumulation of several hallmarks including epithelial to mesenchymal transition (EMT), which promotes cellular and microenvironmental changes resulting in invasion and migration to distant sites, favoring metastasis. EMT can be triggered by different extracellular stimuli, including growth factors such as EGF. In ovarian cancer, the most lethal gynecological cancer, overexpression of the EGFR family is associated with more aggressive clinical behavior, increasing mortality rate caused by metastasis. Our proteomic data, together with specific validation of specific cellular mechanisms demonstrated that EGF-induced EMT in Caov-3 cells leads to important alterations in metabolic process (protein synthesis) and cell cycle control, supporting the implication of EGF/EMT in cancer metastasis, cancer stem cell generation and, therefore, poor prognosis for the disease.


Assuntos
Pontos de Checagem do Ciclo Celular , Fator de Crescimento Epidérmico/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Proteômica/métodos , Linhagem Celular Tumoral , Movimento Celular , Cromatografia Líquida , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Invasividade Neoplásica , Espectrometria de Massas em Tandem
6.
Methods Mol Biol ; 1550: 35-46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28188521

RESUMO

Proteins are very dynamic within the cell and their localization and trafficking between subcellular compartments are critical for their correct function. Indeed, the abnormal localization of a protein might lead to the pathogenesis of several diseases. The association of cell fractionation methods and mass spectrometry based proteomic methods allow both the localization and quantification of proteins in different sub-compartments. Here we present a detailed protocol for enrichment, identification, and quantitation of the nuclear proteome in cell lines combining nuclear subproteome enrichment by differential centrifugation and high-throughput proteomics.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/isolamento & purificação , Proteoma , Proteômica/métodos , Fracionamento Celular/métodos , Linhagem Celular , Núcleo Celular/metabolismo , Biologia Computacional/métodos , Bases de Dados de Proteínas , Ensaios de Triagem em Larga Escala , Humanos , Espectrometria de Massas/métodos , Transporte Proteico
7.
J Proteomics ; 145: 226-236, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27222041

RESUMO

UNLABELLED: Tumor fluid samples have emerged as a rich source for the identification of ovarian cancer in the context of proteomics studies. To uncover differences among benign and malignant ovarian samples, we performed a quantitative proteomic study consisting of albumin immunodepletion, isotope labeling with acrylamide and in-depth proteomic profiling by LC-MS/MS in a pool of 10 samples of each histological type. 1135 proteins were identified, corresponding to 505 gene products. 223 proteins presented associated quantification and the comparative analysis of histological types revealed 75 differentially abundant proteins. Based on this, we developed a panel for targeted proteomic analysis using the multiple reaction monitoring (MRM) method for validation of 51 proteins in individual samples of high-grade serous ovarian tumor fluids (malignant) and benign serous cystadenoma tumor fluids. This analysis showed concordant results in terms of average amounts of proteins, and APOE, SERPINF2, SERPING1, ADAM17, CD44 and OVGP1 were statistically significant between benign and malignant group. The results observed in the MRM for APOE were confirmed by western blotting, where APOE was more abundant in malignant samples. This molecular signature can contribute to improve tumor stratification and shall be investigated in combination with current biomarkers in larger cohorts to improve ovarian cancer diagnosis. BIOLOGICAL SIGNIFICANCE: Despite advances in cancer research, ovarian cancer has a high mortality and remains a major challenge due to a number of particularities of the disease, especially late diagnosis caused by vague clinical symptoms, the cellular and molecular heterogeneity of tumors, and the lack of effective treatment. Thus, efforts are directed to better understand this neoplasia, its origin, development and, particularly the identification and validation of biomarkers for early detection of the disease in asymptomatic stage. In the present work, we confirmed by MRM method in individual ovarian tumor fluid samples the regulation of 27 proteins out of 33 identified in a highthroughput study. We speculate that the presence and/or differential abundance observed in tumor fluid is a cooperation primarily of high rates of secretion of such tumor proteins to extra tumor environment that will at the end accumulate in plasma, and also the accumulation of acute-phase proteins throughout the entire body. On top of that, consideration of physiological influences in the interpretation of expression observed, including age, menopause status, route-of-elimination kinetics and metabolism of the tumor marker, coexisting disease, hormonal imbalances, life-style influences (smoking, alcoholism, obesity), among others, are mandatory to enable the selection of good protein tumor marker candidates for extensive validation.


Assuntos
Biomarcadores Tumorais/análise , Detecção Precoce de Câncer/métodos , Proteínas de Neoplasias/análise , Neoplasias Ovarianas/química , Neoplasias Ovarianas/diagnóstico , Proteômica/métodos , Adulto , Idoso , Líquidos Corporais/química , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Fatores de Risco , Índice de Gravidade de Doença
8.
Int J Clin Exp Med ; 2(3): 280-8, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19918320

RESUMO

The present study evaluated the basal DNA damage and the cellular response to this damage induced by in vitro administration of Etoposide in lymphocytes donated by twenty untreated breast cancer (BC) patients and twenty age-matched healthy women. Micronucleus (MN) and alkaline Comet assays were performed in cultured peripheral blood lymphocytes (PBL) according to a standard protocol for in vitro treatment with various concentrations of Etoposide or a control. For the Comet Assay, three samples of cells were collected: T(0) (immediately preceding treatment of the cultures), T(1) (immediately after completion of the treatment) and T(2) (four hours after completion of the treatment). MN frequency in the BC group treated with 25 muM Etoposide (19.1 +/- 7.35) was significantly higher than the control (10.9 +/- 9.87) group. In the alkaline Comet Assay, both the BC group and the healthy women showed the ability to repair Etoposide-induced DNA damage within 4 hours of reincubation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA