Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ann Surg Oncol ; 31(9): 6138-6146, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38869763

RESUMO

BACKGROUND: The highly metastatic nature of pancreatic ductal adenocarcinoma (PDAC) and the difficulty to achieve favorable patient outcomes emphasize the need for novel therapeutic solutions. For preclinical evaluations, genetically engineered mouse models are often used to mimic human PDAC but frequently fail to replicate synchronous development and metastatic spread. This study aimed to develop a transplantation model to achieve synchronous and homogenous PDAC growth with controlled metastatic patterns in the liver. METHODS: To generate an orthotopic PDAC model, the DT6606 cell line was injected into the pancreas head of C57BL/6 mice, and their survival was monitored over time. To generate a heterotopic transplantation model, growing doses of three PDAC cell lines (DT6606, DT6606lm, and K8484) were injected into the portal vein of mice. Magnetic resonance imaging (MRI) was used to monitor metastatic progression, and histologic analysis was performed. RESULTS: Orthotopically injected mice succumbed to the tumor within an 11-week period (average survival time, 78.2 ± 4.45 days). Post-mortem examinations failed to identify liver metastasis. In the intraportal model, 2 × 105 DT6606 cells resulted in an absence of liver metastases by day 21, whereas 5 × 104 DT6606lm cells and 7 × 104 K8484 cells resulted in steady metastatic growth. Higher doses caused significant metastatic liver involvement. The use of K8484 cells ensured the growth of tumors closely resembling the histopathologic characteristics of human PDAC. CONCLUSIONS: This report details the authors' efforts to establish an "optimal" murine model for inducing metastatic PDAC, which is critical for advancing our understanding of the disease and developing more effective treatments.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas , Animais , Camundongos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/secundário , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Humanos , Células Tumorais Cultivadas , Modelos Animais de Doenças , Taxa de Sobrevida , Transplante de Neoplasias
2.
Xenotransplantation ; 29(1): e12719, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935207

RESUMO

BACKGROUND: Islet xenotransplantation is a promising concept for beta-cell replacement therapy. Reporter genes for noninvasive monitoring of islet engraftment, graft mass changes, long-term survival, and graft failure support the optimization of transplantation strategies. Near-infrared fluorescent protein (iRFP) is ideal for fluorescence imaging (FI) in tissue, but also for multispectral optoacoustic tomography (MSOT) with an even higher imaging depth. Therefore, we generated reporter pigs ubiquitously expressing iRFP. METHODS: CAG-iRPF720 transgenic reporter pigs were generated by somatic cell nuclear transfer from FACS-selected stable transfected donor cells. Neonatal pig islets (NPIs) were transplanted into streptozotocin-diabetic immunodeficient NOD-scid IL2Rgnull (NSG) mice. FI and MSOT were performed to visualize different numbers of NPIs and to evaluate associations between signal intensity and glycemia. MSOT was also tested in a large animal model. RESULTS: CAG-iRFP transgenic NPIs were functionally equivalent with wild-type NPIs. Four weeks after transplantation under the kidney capsule, FI revealed a twofold higher signal for 4000-NPI compared to 1000-NPI grafts. Ten weeks after transplantation, the fluorescence intensity of the 4000-NPI graft was inversely correlated with glycemia. After intramuscular transplantation into diabetic NSG mice, MSOT revealed clear dose-dependent signals for grafts of 750, 1500, and 3000 NPIs. Dose-dependent MSOT signals were also revealed in a pig model, with stronger signals after subcutaneous (depth ∼6 mm) than after submuscular (depth ∼15 mm) placement of the NPIs. CONCLUSIONS: Islets from CAG-iRFP transgenic pigs are fully functional and accessible to long-term monitoring by state-of-the-art imaging modalities. The novel reporter pigs will support the development and preclinical testing of novel matrices and engraftment strategies for porcine xeno-islets.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Animais Geneticamente Modificados , Glicemia , Xenoenxertos , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos NOD , Proteína Estafilocócica A , Suínos , Transplante Heterólogo/métodos
4.
Int J Biol Sci ; 19(1): 156-166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594095

RESUMO

Rationale: The αvß6- and αvß8-integrins, two cell-adhesion receptors upregulated in many tumors and involved in the activation of the latency associated peptide (LAP)/TGFß complex, represent potential targets for tumor imaging and therapy. We investigated the tumor-homing properties of a chromogranin A-derived peptide containing an RGDL motif followed by a chemically stapled alpha-helix (called "5a"), which selectively recognizes the LAP/TGFß complex-binding site of αvß6 and αvß8. Methods: Peptide 5a was labeled with IRDye 800CW (a near-infrared fluorescent dye) or with 18F-NOTA (a label for positron emission tomography (PET)); the integrin-binding properties of free peptide and conjugates were then investigated using purified αvß6/αvß8 integrins and various αvß6/αvß8 single - or double-positive cancer cells; tumor-homing, biodistribution and imaging properties of the conjugates were investigated in subcutaneous and orthotopic αvß6-positive carcinomas of the pancreas, and in mice bearing subcutaneous αvß8-positive prostate tumors. Results: In vitro studies showed that 5a can bind both integrins with high affinity and inhibits cell-mediated TGFß activation. The 5a-IRDye and 5a-NOTA conjugates could bind purified αvß6/αvß8 integrins with no loss of affinity compared to free peptide, and selectively recognized various αvß6/αvß8 single- or double-positive cancer cells, including cells from pancreatic carcinoma, melanoma, oral mucosa, bladder and prostate cancer. In vivo static and dynamic optical near-infrared and PET/CT imaging and biodistribution studies, performed in mice with subcutaneous and orthotopic αvß6-positive carcinomas of the pancreas, showed high target-specific uptake of fluorescence- and radio-labeled peptide by tumors and low non-specific uptake in other organs and tissues, except for excretory organs. Significant target-specific uptake of fluorescence-labeled peptide was also observed in mice bearing αvß8-positive prostate tumors. Conclusions: The results indicate that 5a can home to αvß6- and/or αvß8-positive tumors, suggesting that this peptide can be exploited as a ligand for delivering imaging or anticancer agents to αvß6/αvß8 single- or double-positive tumors, or as a tumor-homing inhibitor of these TGFß activators.


Assuntos
Carcinoma , Neoplasias Pancreáticas , Neoplasias da Próstata , Masculino , Animais , Camundongos , Humanos , Cromogranina A/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual , Peptídeos/química , Integrinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Nat Commun ; 14(1): 878, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797282

RESUMO

Intrahepatic islet transplantation is the standard cell therapy for ß cell replacement. However, the shortage of organ donors and an unsatisfactory engraftment limit its application to a selected patients with type 1 diabetes. There is an urgent need to identify alternative strategies based on an unlimited source of insulin producing cells and innovative scaffolds to foster cell interaction and integration to orchestrate physiological endocrine function. We previously proposed the use of decellularized lung as a scaffold for ß cell replacement with the final goal of engineering a vascularized endocrine organ. Here, we prototyped this technology with the integration of neonatal porcine islet and healthy subject-derived blood outgrowth endothelial cells to engineer a xenogeneic vascularized endocrine pancreas. We validated ex vivo cell integration and function, its engraftment and performance in a preclinical model of diabetes. Results showed that this technology not only is able to foster neonatal pig islet maturation in vitro, but also to perform in vivo immediately upon transplantation and for over 18 weeks, compared to normal performance within 8 weeks in various state of the art preclinical models. Given the recent progress in donor pig genetic engineering, this technology may enable the assembly of immune-protected functional endocrine organs.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliais , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Células Secretoras de Insulina/metabolismo , Pâncreas
6.
Foods ; 11(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35804798

RESUMO

Short chain fatty acids (SCFAs), especially butyrate (BUT), are known to promote intestinal health, but their role in the protection of intestinal barrier integrity is poorly characterized. The aim of the study was to set up an in vitro model of human colon epithelium using HT29-MTX-E12 cells to delineate the potential role of SCFAs under stress conditions. Accordingly, the HT29-MTX-E12 cells were differentiated for 42 days and subsequently exposed to dextran sulphate sodium (DSS). Further, the effects of BUT or its mixture with acetate and propionate (SCFAs-MIX) were tested to study proliferation, epithelial integrity and mucus production. The results showed that the concentration of 10% DSS for 24 h decreased the TEER about 50% compared to the control in HT29-MTX-E12 cells. The pre-treatment on HT29-MTX-E12 cells with BUT or SCFAs-MIX at specific concentrations significantly (p < 0.05) reduced the DSS-induced damage on epithelial cell integrity and permeability. Further, the treatment with specific concentrations of BUT and SCFAs-MIX for 24 h significantly promoted ZO-1, MUC2 and MUC5AC mRNA expression (p < 0.005). The present study demonstrated the suitability of HT29-MTX-E12 cells treated with DSS as an in vitro stress model of inflammatory bowel disease, which enabled us to understand the effect of bioactive SCFAs on the intestinal barrier.

7.
Acta Diabetol ; 56(9): 1013-1022, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30989379

RESUMO

AIM: More than 40% of pancreatic ductal adenocarcinoma (PDAC) patients have glucose intolerance or diabetes. The association has led to two hypotheses: PDAC causes diabetes or diabetes shares risk factors for the development of PDAC. In order to elucidate the relationship between diabetes and PDAC, we investigated the glucose metabolism during tumorigenesis in the LSL-KrasG12D/+; LSL-Trp53R172H/+; and Pdx-1-Cre (KPC) mouse, a genetically engineered model of PDAC. METHODS: Male and female KPCs have been fed with standard diet (SD) or high-fat diet (HFD). The imaging-based 4-class tumor staging was used to follow pancreatic cancer development. Not fasting glycemia, 4-h fasting glycemia, insulin, C-peptide, glucose tolerance after OGTT and abdominal fat volume were measured during tumorigenesis. RESULTS: PDAC development did not lead to an overt diabetic phenotype or to any alterations in glucose tolerance in KPC fed with SD. Consumption of HFD induced higher body weight/abdominal fat volume and worsened glucose homeostasis both in control CRE mice and only in early tumorigenesis stages of the KPC mice, excluding that the cancer development itself acts as a trigger for the onset of dysmetabolic features. CONCLUSION: Our data demonstrate that carcinogenesis in KPC mice is not associated with paraneoplastic diabetes.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Carcinogênese/metabolismo , Glucose/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Metabolismo dos Carboidratos/genética , Carcinogênese/genética , Carcinoma Ductal Pancreático/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estadiamento de Neoplasias , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA