Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
FASEB J ; 33(10): 10833-10843, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31266368

RESUMO

Increased airway smooth muscle (ASM) cell mass and secretory functions are characteristics of airway inflammatory diseases, such as asthma. To date, there are no effective therapies to combat ASM cell proliferation, which contributes to bronchoconstriction and airway obstruction. Growth factors such as platelet-derived growth factor (PDGF) and the activation of the ERK1/2 are major regulators of ASM cell proliferation and airway remodeling in asthma. However, given the ubiquitous expression and multiple functions of ERK1/2, complete inhibition of ERK1/2 using ATP-competitive inhibitors may lead to unwanted off-target effects. Alternatively, we have identified compounds that are designed to target substrate docking sites and act as function-selective inhibitors of ERK1/2 signaling. Here, we show that both function-selective and ATP-competitive ERK1/2 inhibitors are effective at inhibiting PDGF-mediated proliferation, collagen production, and IL-6 secretion in ASM cells. Proteomic analysis revealed that both types of inhibitors had similar effects on reducing proteins related to TGF-ß and IL-6 signaling that are relevant to airway remodeling. However, function-selective ERK1/2 inhibitors caused fewer changes in protein expression compared with ATP-competitive inhibitors. These studies provide a molecular basis for the development of function-selective ERK1/2 inhibitors to mitigate airway remodeling in asthma with defined regulation of ERK1/2 signaling.-Defnet, A. E., Huang, W., Polischak, S., Yadav, S. K., Kane, M. A., Shapiro, P., Deshpande, D. A. Effects of ATP-competitive and function-selective ERK inhibitors on airway smooth muscle cell proliferation.


Assuntos
Brônquios/citologia , Brônquios/metabolismo , Sistema de Sinalização das MAP Quinases , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Trifosfato de Adenosina/metabolismo , Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/metabolismo , Asma/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição AP-1/metabolismo
2.
FASEB J ; 33(4): 4780-4789, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30601680

RESUMO

Prostaglandin E2 (PGE2) is produced in the airway during allergic lung inflammation and both promotes and inhibits features of asthma pathology. These mixed effects relate to 4 E-prostanoid (EP) receptor subtypes (EP1, 2, 3 and 4) expressed at different levels on different resident and infiltrating airway cells. Although studies have asserted both EP2 and EP4 expression in human airway smooth muscle (HASM), a recent study asserted EP4 to be the functionally dominant EP subtype in HASM. Herein, we employ recently-developed subtype-selective ligands to investigate singular or combined EP2 and EP4 receptor activation in regulating HASM signaling and proliferation. The subtype specificity of ONO-AE1-259-01 (EP2 agonist) and ONO-AE1-329 (EP4 agonist) was first demonstrated in human embryonic kidney 293 cells stably expressing different EP receptor subtypes. EP receptor knockdown and subtype-selective antagonists demonstrated EP2 and EP4 receptor responsiveness in HASM cells to the specific ONO compounds, whereas PGE2 appeared to preferentially signal via the EP4 receptor. Both singular EP2 and EP4 receptor agonists inhibited HASM proliferation, and combined EP2 and EP4 receptor agonism exhibited positive cooperativity in both chronic Gs-mediated signaling and inhibiting HASM proliferation. These findings suggest both EP2 and EP4 are functionally important in HASM, and their combined targeting optimally inhibits airway smooth muscle proliferation.-Michael, J. V. Gavrila, A., Nayak, A. P., Pera, T., Liberato, J. R., Polischak, S. R., Shah, S. D., Deshpande, D. A., Penn, R. B. Cooperativity of E-prostanoid receptor subtypes in regulating signaling and growth inhibition in human airway smooth muscle.


Assuntos
Músculo Liso/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Immunoblotting , Microscopia Confocal , RNA Interferente Pequeno/genética , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP3/genética , Receptores de Prostaglandina E Subtipo EP4/genética , Transdução de Sinais/fisiologia
3.
Mol Pharm ; 15(5): 1778-1790, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29616555

RESUMO

Second generation antiandrogens have improved overall survival for men with metastatic castrate resistant prostate cancer; however, the antiandrogens result in suppression of androgen receptor (AR) activity in all tissues resulting in dose limiting toxicity. We sought to overcome this limitation through encapsulation in a prostate specific membrane antigen (PSMA)-conjugated nanoparticle. We designed and characterized a novel nanoparticle containing an antiandrogen, enzalutamide. Selectivity and enhanced efficacy was achieved through coating the particle with PSMA. The PSMA-conjugated nanoparticle was internalized selectively in AR expressing prostate cancer cells. It did not elicit an inflammatory effect. The efficacy of enzalutamide was not compromised through insertion into the nanoparticle; in fact, lower systemic drug concentrations of enzalutamide resulted in comparable clinical activity. Normal muscle cells were not impacted by the PSMA-conjugated containing antiandrogen. This approach represents a novel strategy to increase the specificity and effectiveness of antiandrogen treatment for men with castrate resistant prostate cancer. The ability to deliver higher drug concentrations in prostate cancer cells may translate into improved clinical end points including overall survival.


Assuntos
Antagonistas de Androgênios/química , Antagonistas de Androgênios/farmacologia , Nanopartículas/química , Antígeno Prostático Específico/metabolismo , Receptores Androgênicos/metabolismo , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Células MCF-7 , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA