RESUMO
Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.
Assuntos
Interleucina-4 , Lipopolissacarídeos , Camundongos , Animais , Interleucina-4/metabolismo , Lipopolissacarídeos/metabolismo , Ligantes , Epigenômica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigênese Genética , NF-kappa B/metabolismoRESUMO
Macrophages polarize into functionally distinct subtypes while responding to microenvironmental cues. The identity of proximal transcription factors (TFs) downstream from the polarization signals are known, but their activity is typically transient, failing to explain the long-term, stable epigenomic programs developed. Here, we mapped the early and late epigenomic changes of interleukin-4 (IL-4)-induced alternative macrophage polarization. We identified the TF, early growth response 2 (EGR2), bridging the early transient and late stable gene expression program of polarization. EGR2 is a direct target of IL-4-activated STAT6, having broad action indispensable for 77% of the induced gene signature of alternative polarization, including its autoregulation and a robust, downstream TF cascade involving PPARG. Mechanistically, EGR2 binding results in chromatin opening and the recruitment of chromatin remodelers and RNA polymerase II. Egr2 induction is evolutionarily conserved during alternative polarization of mouse and human macrophages. In the context of tissue resident macrophages, Egr2 expression is most prominent in the lung of a variety of species. Thus, EGR2 is an example of an essential and evolutionarily conserved broad acting factor, linking transient polarization signals to stable epigenomic and transcriptional changes in macrophages.
Assuntos
Polaridade Celular/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Epigênese Genética/genética , Macrófagos/citologia , Fator de Transcrição STAT6/metabolismo , Ativação Transcricional/genética , Animais , Mapeamento Cromossômico , Sequência Conservada , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Interleucina-4/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Domínios e Motivos de Interação entre Proteínas/genética , Fator de Transcrição STAT6/genética , Transcriptoma/genéticaRESUMO
Macrophages polarize into distinct phenotypes in response to complex environmental cues. We found that the nuclear receptor PPARγ drove robust phenotypic changes in macrophages upon repeated stimulation with interleukin (IL)-4. The functions of PPARγ on macrophage polarization in this setting were independent of ligand binding. Ligand-insensitive PPARγ bound DNA and recruited the coactivator P300 and the architectural protein RAD21. This established a permissive chromatin environment that conferred transcriptional memory by facilitating the binding of the transcriptional regulator STAT6 and RNA polymerase II, leading to robust production of enhancer and mRNAs upon IL-4 re-stimulation. Ligand-insensitive PPARγ binding controlled the expression of an extracellular matrix remodeling-related gene network in macrophages. Expression of these genes increased during muscle regeneration in a mouse model of injury, and this increase coincided with the detection of IL-4 and PPARγ in the affected tissue. Thus, a predominantly ligand-insensitive PPARγ:RXR cistrome regulates progressive and/or reinforcing macrophage polarization.
Assuntos
Epigênese Genética/imunologia , Epigenômica/métodos , Regulação da Expressão Gênica/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , PPAR gama/imunologia , Animais , Linhagem Celular , Células Cultivadas , Interleucina-4/imunologia , Interleucina-4/farmacologia , Ligantes , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , PPAR gama/genética , PPAR gama/metabolismoRESUMO
The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1ß production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli.
Assuntos
Interleucina-4/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT6/metabolismo , Animais , Western Blotting , Linhagem Celular , Elementos Facilitadores Genéticos , Citometria de Fluxo , Regulação da Expressão Gênica , Inflamassomos/metabolismo , Citometria de Varredura a Laser , Lipopolissacarídeos/farmacologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Piroptose/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Tissue regeneration requires inflammatory and reparatory activity of macrophages. Macrophages detect and eliminate the damaged tissue and subsequently promote regeneration. This dichotomy requires the switch of effector functions of macrophages coordinated with other cell types inside the injured tissue. The gene regulatory events supporting the sensory and effector functions of macrophages involved in tissue repair are not well understood. Here we show that the lipid activated transcription factor, PPARγ, is required for proper skeletal muscle regeneration, acting in repair macrophages. PPARγ controls the expression of the transforming growth factor-ß (TGF-ß) family member, GDF3, which in turn regulates the restoration of skeletal muscle integrity by promoting muscle progenitor cell fusion. This work establishes PPARγ as a required metabolic sensor and transcriptional regulator of repair macrophages. Moreover, this work also establishes GDF3 as a secreted extrinsic effector protein acting on myoblasts and serving as an exclusively macrophage-derived regeneration factor in tissue repair.
Assuntos
Fator 3 de Diferenciação de Crescimento/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , PPAR gama/metabolismo , Regeneração/fisiologia , Animais , Western Blotting , Separação Celular , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , Análise de Sequência com Séries de Oligonucleotídeos , Cicatrização/fisiologiaRESUMO
Chondrogenesis is a multistep process, in which cartilage progenitor cells generate a tissue with distinct structural and functional properties. Although several approaches to cartilage regeneration rely on the differentiation of implanted progenitor cells, the temporal transcriptomic landscape of in vitro chondrogenesis in different models has not been reported. Using RNA sequencing, we examined differences in gene expression patterns during cartilage formation in micromass cultures of embryonic limb bud-derived progenitors. Principal component and trajectory analyses revealed a progressively different and distinct transcriptome during chondrogenesis. Differentially expressed genes (DEGs), based on pairwise comparisons of samples from consecutive days were classified into clusters and analysed. We confirmed the involvement of the top DEGs in chondrogenic differentiation using pathway analysis and identified several chondrogenesis-associated transcription factors and collagen subtypes that were not previously linked to cartilage formation. Transient gene silencing of ATOH8 or EBF1 on day 0 attenuated chondrogenesis by deregulating the expression of key osteochondrogenic marker genes in micromass cultures. These results provide detailed insight into the molecular mechanism of chondrogenesis in primary micromass cultures and present a comprehensive dataset of the temporal transcriptomic landscape of chondrogenesis, which may serve as a platform for new molecular approaches in cartilage tissue engineering.
Assuntos
Condrogênese , Transcriptoma , Condrogênese/genética , Cartilagem/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células Cultivadas , Condrócitos/metabolismoRESUMO
Kisspeptin neurons in the mediobasal hypothalamus (MBH) are critical targets of ovarian estrogen feedback regulating mammalian fertility. To reveal molecular mechanisms underlying this signaling, we thoroughly characterized the estrogen-regulated transcriptome of kisspeptin cells from ovariectomized transgenic mice substituted with 17ß-estradiol or vehicle. MBH kisspeptin neurons were harvested using laser-capture microdissection, pooled, and subjected to RNA sequencing. Estrogen treatment significantly (p.adj. < 0.05) up-regulated 1,190 and down-regulated 1,139 transcripts, including transcription factors, neuropeptides, ribosomal and mitochondrial proteins, ion channels, transporters, receptors, and regulatory RNAs. Reduced expression of the excitatory serotonin receptor-4 transcript (Htr4) diminished kisspeptin neuron responsiveness to serotonergic stimulation. Many estrogen-regulated transcripts have been implicated in puberty/fertility disorders. Patients (n = 337) with congenital hypogonadotropic hypogonadism (CHH) showed enrichment of rare variants in putative CHH-candidate genes (e.g., LRP1B, CACNA1G, FNDC3A). Comprehensive characterization of the estrogen-dependent kisspeptin neuron transcriptome sheds light on the molecular mechanisms of ovary-brain communication and informs genetic research on human fertility disorders.
Assuntos
Núcleo Arqueado do Hipotálamo , Estrogênios , Fertilidade , Kisspeptinas , Neurônios , Ovário , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica , Humanos , Hipogonadismo/congênito , Hipogonadismo/genética , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Ovário/metabolismoRESUMO
Single-cell transcriptomics are powerful tools to define neuronal cell types based on co-expressed gene clusters. Limited RNA input in these technologies necessarily compromises transcriptome coverage and accuracy of differential expression analysis. We propose that bulk RNA-Seq of neuronal pools defined by spatial position offers an alternative strategy to overcome these technical limitations. We report a laser-capture microdissection (LCM)-Seq method which allows deep transcriptome profiling of fluorescently tagged neuron populations isolated with LCM from histological sections of transgenic mice. Mild formaldehyde fixation of ZsGreen marker protein, LCM sampling of â¼300 pooled neurons, followed by RNA isolation, library preparation and RNA-Seq with methods optimized for nanogram amounts of moderately degraded RNA enabled us to detect â¼15,000 different transcripts in fluorescently labeled cholinergic neuron populations. The LCM-Seq approach showed excellent accuracy in quantitative studies, allowing us to detect 2891 transcripts expressed differentially between the spatially defined and clinically relevant cholinergic neuron populations of the dorsal caudate-putamen and medial septum. In summary, the LCM-Seq method we report in this study is a versatile, sensitive, and accurate bulk sequencing approach to study the transcriptome profile and differential gene expression of fluorescently tagged neuronal populations isolated from transgenic mice with high spatial precision.
RESUMO
Fluoxetine is a safe antidepressant with remarkable anti-inflammatory actions; therefore, we aimed to investigate its effects on immortalized (HaCaT) as well as primary human epidermal keratinocytes in a polyinosinic-polycytidylic acid (p(I:C))-induced inflammatory model. We found that a non-cytotoxic concentration (MTT-assay, CyQUANT-assay) of fluoxetine significantly suppressed p(I:C)-induced expression and release of several pro-inflammatory cytokines (Q-PCR, cytokine array, ELISA), and it decreased the release of the itch mediator endothelins (ELISA). These effects were not mediated by the inhibition of the NF-κB or p38 MAPK pathways (western blot), or by the suppression of the p(I:C)-induced elevation of mitochondrial ROS production (MitoSOX Red labeling). Instead, unbiased activity profiling revealed that they were most likely mediated via the inhibition of the phosphoinositide 3-kinase (PI3K) pathway. Importantly, the PI3K-inhibitor GDC0941 fully mimicked the effects of fluoxetine (Q-PCR, ELISA). Although fluoxetine was able to occupy the binding site of GDC0941 (in silico molecular docking), and exerted direct inhibitory effect on PI3K (cell-free PI3K activity assay), it exhibited much lower potency and efficacy as compared to GDC0941. Finally, RNA-Seq analysis revealed that fluoxetine deeply influenced the transcriptional alterations induced by p(I:C)-treatment, and exerted an overall anti-inflammatory activity. Collectively, our findings demonstrate that fluoxetine exerts potent anti-inflammatory effects, and suppresses the release of the endogenous itch mediator endothelins in human keratinocytes, most likely via interfering with the PI3K pathway. Thus, clinical studies are encouraged to explore whether the currently reported beneficial effects translate in vivo following its topical administration in inflammatory and pruritic dermatoses.
Assuntos
Fluoxetina , Indazóis , Fosfatidilinositol 3-Quinases , Sulfonamidas , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fluoxetina/farmacologia , Fluoxetina/metabolismo , Simulação de Acoplamento Molecular , Queratinócitos/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Prurido/metabolismoRESUMO
The antiviral state, an initial line of defense against viral infection, is established by a set of IFN-stimulated genes (ISGs) encoding antiviral effector proteins. The effector ISGs are transcriptionally regulated by type I IFNs mainly via activation of IFN-stimulated gene factor 3 (ISGF3). In this study, the regulatory elements of effector ISGs were characterized to determine the (epi)genetic features that enable their robust induction by type I IFNs in multiple cell types. We determined the location of regulatory elements, the DNA motifs, the occupancy of ISGF3 subunits (IRF9, STAT1, and STAT2) and other transcription factors, and the chromatin accessibility of 37 effector ISGs in murine dendritic cells. The IFN-stimulated response element (ISRE) and its tripartite version occurred most frequently in the regulatory elements of effector ISGs than in any other tested ISG subsets. Chromatin accessibility at their promoter regions was similar to most other ISGs but higher than at the promoters of inflammation-related cytokines, which were used as a reference gene set. Most effector ISGs (81.1%) had at least one ISGF3 binding region proximal to the transcription start site (TSS), and only a subset of effector ISGs (24.3%) was associated with three or more ISGF3 binding regions. The IRF9 signals were typically higher, and ISRE motifs were "stronger" (more similar to the canonical sequence) in TSS-proximal versus TSS-distal regulatory regions. Moreover, most TSS-proximal regulatory regions were accessible before stimulation in multiple cell types. Our results indicate that "strong" ISRE motifs and universally accessible promoter regions that permit robust, widespread induction are characteristic features of effector ISGs.
Assuntos
Fatores de Restrição Antivirais , Cromatina , Animais , Camundongos , Cromatina/genética , Motivos de Nucleotídeos , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Interferons/metabolismoRESUMO
BACKGROUND: Acne vulgaris provides a unique disease setting in which a prominent skin inflammation is coupled with the overproduction of lipid-rich sebum. OBJECTIVES: Our goal was to evaluate the expression of barrier molecules in papular acne skin samples obtained from untreated patients and compare those to the results of healthy and of papulopustular rosacea-involved ones at the mRNA and protein levels. In addition, we aimed to assess the effects of various sebum composing lipids on the expression of proteins involved in barrier formation in keratinocytes. METHODS: Available microarray data sets of papular acne and papulopustular rosacea-affected skin samples were re-analysed with a focus on epidermal barrier-related pathways. Immunohistochemistry was performed to detect barrier molecules in the interfollicular regions of human acne and healthy skin samples. Protein levels of barrier-related genes were measured by western blot in samples of HaCaT keratinocytes treated with selected lipids. RESULTS: Meta-analysis of whole transcriptome data sets revealed that barrier-related pathways are significantly affected in acne vulgaris skin samples. While an altered expression of key molecules in maintaining barrier functions such as filaggrin, keratin 1, involucrin, desmoglein 1, kallikrein 5 and 7, was also observed at the protein levels, our data demonstrated that sebum composing lipids may selectively modify the levels of epidermal barrier-related molecules. CONCLUSIONS: Our results suggest that although not as prominently as in the dry papulopustular rosacea skin, the epidermal barrier in the interfollicular region may be damaged also in the lipid-rich skin samples of papular acne. Furthermore, our findings indicating diverse regulatory effects of various sebum lipids on the expression of barrier molecules in keratinocytes suggest, that they may influence the moisturization of the skin as well. Altogether, our findings could have implications in the development of sebum-modulating anti-acne therapies and even in the care of symptom-free skin.
Assuntos
Acne Vulgar , Rosácea , Humanos , Acne Vulgar/metabolismo , Sebo/metabolismo , Queratinócitos , LipídeosRESUMO
Transglutaminase 2 (TG2) is a critical cancer cell survival factor that activates several signalling pathways to foster drug resistance, cancer stem cell survival, metastasis, inflammation, epithelial-mesenchymal transition, and angiogenesis. All-trans retinoic acid (ATRA) and chemotherapy have been the standard treatments for acute promyelocytic leukaemia (APL), but clinical studies have shown that arsenic trioxide (ATO), alone or in combination with ATRA, can improve outcomes. ATO exerts cytotoxic effects in a variety of ways by inducing oxidative stress, genotoxicity, altered signal transduction, and/or epigenetic modification. In the present study, we showed that ATO increased ROS production and apoptosis ratios in ATRA-differentiated NB4 leukaemia cells, and that these responses were enhanced when TG2 was deleted. The combined ATRA + ATO treatment also increased the amount of nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, an adaptive regulator of the cellular oxidative stress response, and calpain proteolytic activity, resulting in TG2 degradation and the reduced survival of WT leukaemia cells. We further showed that the induced TG2 protein expression was degraded in the MCF-7 epithelial cell line and primary peripheral blood mononuclear cells upon ATO treatment, thereby sensitising these cell types to apoptotic signals.
Assuntos
Arsenicais , Leucemia Promielocítica Aguda , Humanos , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Calpaína/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase , Leucócitos Mononucleares/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Apoptose , Óxidos/farmacologia , Arsenicais/farmacologiaRESUMO
Smoking is a well established risk factor for coronary artery disease (CAD). Despite this, there have been no previous studies investigating the effects of smoking on blood gene expression in CAD patients. This single-centre cross-sectional study was designed with clearly defined inclusion criteria to address this gap. We conducted a high-throughput approach using next generation sequencing analysis with a single-end sequencing protocol and a read length of 75-cycles. Sixty-one patients with a median age of 67 years (range: 28-88 years) were recruited, and only 44 subjects were included for further analyses. Our investigation revealed 120 differentially expressed genes (DEGs) between smokers and nonsmokers, with a fold change (FC) of ≥1.5 and a p-value < 0.05. Among these DEGs, 15 were upregulated and 105 were downregulated. Notably, when applying a more stringent adjusted FC ≥ 2.0, 31 DEGs (5 upregulated, annotated to immune response pathways, and 26 downregulated, involving oxygen and haem binding or activity, with FDR ≤ 0.03) remained statistically significant at an alpha level of <0.05. Our results illuminate the molecular mechanisms underlying CAD, fortifying existing epidemiological evidence. Of particular interest is the unexplored overexpression of RCAN3, TRAV4, and JCHAIN genes, which may hold promising implications for the involvement of these genes in CAD among smokers.
Assuntos
Doença da Artéria Coronariana , Fumar , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Fumar/efeitos adversos , Doença da Artéria Coronariana/genética , Estudos Transversais , Transcriptoma , Fumar TabacoRESUMO
The disease-residual transcriptomic profile (DRTP) within psoriatic healed/resolved skin and epidermal tissue-resident memory T (TRM) cells have been proposed to be crucial for the recurrence of old lesions. However, it is unclear whether epidermal keratinocytes are involved in disease recurrence. There is increasing evidence regarding the importance of epigenetic mechanisms in the pathogenesis of psoriasis. Nonetheless, the epigenetic changes that contribute to the recurrence of psoriasis remain unknown. The aim of this study was to elucidate the role of keratinocytes in psoriasis relapse. The epigenetic marks 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) were visualized using immunofluorescence staining, and RNA sequencing was performed on paired never-lesional and resolved epidermal and dermal compartments of skin from psoriasis patients. We observed diminished 5-mC and 5-hmC amounts and decreased mRNA expression of the ten-eleven translocation (TET) 3 enzyme in the resolved epidermis. SAMHD1, C10orf99, and AKR1B10: the highly dysregulated genes in resolved epidermis are known to be associated with pathogenesis of psoriasis, and the DRTP was enriched in WNT, TNF, and mTOR signaling pathways. Our results suggest that epigenetic changes detected in epidermal keratinocytes of resolved skin may be responsible for the DRTP in the same regions. Thus, the DRTP of keratinocytes may contribute to site-specific local relapse.
Assuntos
Psoríase , Transcriptoma , Humanos , Epigenômica , Pele/metabolismo , Queratinócitos/metabolismo , Epiderme/metabolismo , Psoríase/metabolismoRESUMO
RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program.
Assuntos
Elementos Facilitadores Genéticos , Macrófagos/metabolismo , Neovascularização Fisiológica/fisiologia , Receptores X de Retinoides/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Histonas/metabolismo , Ligantes , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Compostos Orgânicos/farmacologia , RNA/metabolismo , Transcrição Gênica/efeitos dos fármacosRESUMO
Beige adipocytes with thermogenic function are activated during cold exposure in white adipose tissue through the process of browning. These cells, similar to brown adipocytes, dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). Recently, we have shown that tissue transglutaminase (TG2) knock-out mice have decreased cold tolerance in parallel with lower utilization of their epididymal adipose tissue and reduced browning. To learn more about the thermogenic function of this fat depot, we isolated preadipocytes from the epididymal adipose tissue of wild-type and TG2 knock-out mice and differentiated them in the beige direction. Although differentiation of TG2 knock-out preadipocytes is phenotypically similar to the wild-type cells, the mitochondria of the knock-out beige cells have multiple impairments including an altered electron transport system generating lower electrochemical potential difference, reduced oxygen consumption, lower UCP1 protein content, and a higher portion of fragmented mitochondria. Most of these differences are present in preadipocytes as well, and the differentiation process cannot overcome the functional disadvantages completely. TG2 knock-out beige adipocytes produce more iodothyronine deiodinase 3 (DIO3) which may inactivate thyroid hormones required for the establishment of optimal mitochondrial function. The TG2 knock-out preadipocytes and beige cells are both hypometabolic as compared with the wild-type controls which may also be explained by the lower expression of solute carrier proteins SLC25A45, SLC25A47, and SLC25A42 which transport acylcarnitine, Co-A, and amino acids into the mitochondrial matrix. As a consequence, the mitochondria in TG2 knock-out beige adipocytes probably cannot reach the energy-producing threshold required for normal thermogenic functions, which may contribute to the decreased cold tolerance of TG2 knock-out mice.
Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Termogênese , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismoRESUMO
Chondrogenic progenitor cells (CPCs) may be used as an alternative source of cells with potentially superior chondrogenic potential compared to mesenchymal stem cells (MSCs), and could be exploited for future regenerative therapies targeting articular cartilage in degenerative diseases such as osteoarthritis (OA). In this study, we hypothesised that CPCs derived from OA cartilage may be characterised by a distinct channelome. First, a global transcriptomic analysis using Affymetrix microarrays was performed. We studied the profiles of those ion channels and transporter families that may be relevant to chondroprogenitor cell physiology. Following validation of the microarray data with quantitative reverse transcription-polymerase chain reaction, we examined the role of calcium-dependent potassium channels in CPCs and observed functional large-conductance calcium-activated potassium (BK) channels involved in the maintenance of the chondroprogenitor phenotype. In line with our very recent results, we found that the KCNMA1 gene was upregulated in CPCs and observed currents that could be attributed to the BK channel. The BK channel inhibitor paxilline significantly inhibited proliferation, increased the expression of the osteogenic transcription factor RUNX2, enhanced the migration parameters, and completely abolished spontaneous Ca2+ events in CPCs. Through characterisation of their channelome we demonstrate that CPCs are a distinct cell population but are highly similar to MSCs in many respects. This study adds key mechanistic data to the in-depth characterisation of CPCs and their phenotype in the context of cartilage regeneration.
Assuntos
Cartilagem Articular/metabolismo , Movimento Celular , Condrócitos/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Osteoartrite do Joelho/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Sinalização do Cálcio , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Perfilação da Expressão Gênica , Humanos , Canais Iônicos/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana , Proteínas de Membrana Transportadoras/genética , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Bloqueadores dos Canais de Potássio/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Fatores de TempoRESUMO
BACKGROUND: The lack of an understanding about the genomic architecture underpinning parental behaviour in subsocial insects displaying simple parental behaviours prevents the development of a full understanding about the evolutionary origin of sociality. Lethrus apterus is one of the few insect species that has biparental care. Division of labour can be observed between parents during the reproductive period in order to provide food and protection for their offspring. RESULTS: Here, we report the draft genome of L. apterus, the first genome in the family Geotrupidae. The final assembly consisted of 286.93 Mbp in 66,933 scaffolds. Completeness analysis found the assembly contained 93.5% of the Endopterygota core BUSCO gene set. Ab initio gene prediction resulted in 25,385 coding genes, whereas homology-based analyses predicted 22,551 protein coding genes. After merging, 20,734 were found during functional annotation. Compared to other publicly available beetle genomes, 23,528 genes among the predicted genes were assigned to orthogroups of which 1664 were in species-specific groups. Additionally, reproduction related genes were found among the predicted genes based on which a reduction in the number of odorant- and pheromone-binding proteins was detected. CONCLUSIONS: These genes can be used in further comparative and functional genomic researches which can advance our understanding of the genetic basis and hence the evolution of parental behaviour.
Assuntos
Besouros , Animais , Besouros/genética , Genoma de Inseto , Genômica , Reprodução , Comportamento SocialRESUMO
The capability of RNA isolation with good efficiency and high quality is essential for a downstream application such as RNA sequencing. It requires successful cell culturing and an effective RNA isolation method. Although effective methods are available, production of the homogenous mycelia and extraction of good-quality mycelial RNA from true invasive hyphae, which penetrated into the agar plates, are difficult. To overcome these problems, the aim of this study was to develop technical modifications which allow production of homogenous mycelial biomass without extra stimuli agents and improve quality of the RNA extracted from the fungal hyphae. Our alternative culture medium was suitable for production both yeast-phase cells and hyphae of the Schizosaccharomyces japonicus and other dimorphic species, such as the Candida albicans, Saccharomyces cerevisiae, and Jaminaea angkorensis. To improve quality of the mycelial RNA, we developed an isolation procedure of the hyphal tip, which eliminated the unnecessary vacuoles-containing parts of the hyphae. To increase RNA quantity, we used glass beads in the RNA extraction protocol to achieve stronger breaking of the mycelial walls. All these modifications can also be useful for researchers working with other dimorphic fungi and can contribute to the higher comparability of the transcriptional data coming from yeast-phase cells and hyphae or even from different species.
Assuntos
Meios de Cultura , Fungos/genética , Hifas/genética , Micélio/genética , RNA Fúngico/isolamento & purificação , Basidiomycota/genética , Meios de Cultura/química , Fungos/química , Gelatina/química , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genéticaRESUMO
BACKGROUND: miRNAs and lncRNAs can regulate cellular biological processes both under physiological and pathological conditions including tumour initiation and progression. Interactions between differentially expressed diverse RNA species, as a part of a complex intracellular regulatory network (ceRNA network), may contribute also to the pathogenesis of HPV-associated cancer. The purpose of this study was to investigate the global expression changes of miRNAs, lncRNAs and mRNAs driven by the E6 and E7 oncoproteins of HPV16, and construct a corresponding ceRNA regulatory network of coding and non-coding genes to suggest a regulatory network associated with high-risk HPV16 infections. Furthermore, additional GO and KEGG analyses were performed to understand the consequences of mRNA expression alterations on biological processes. METHODS: Small and large RNA deep sequencing were performed to detect expression changes of miRNAs, lncRNAs and mRNAs in primary human keratinocytes expressing HPV16 E6, E7 or both oncoproteins. The relationships between lncRNAs, miRNAs and mRNAs were predicted by using StarBase v2.0, DianaTools-LncBase v.2 and miRTarBase. The lncRNA-miRNA-mRNA regulatory network was visualized with Cytoscape v3.4.0. GO and KEEG pathway enrichment analysis was performed using DAVID v6.8. RESULTS: We revealed that 85 miRNAs in 21 genomic clusters and 41 lncRNAs were abnormally expressed in HPV E6/E7 expressing cells compared with controls. We constructed a ceRNA network with members of 15 lncRNAs - 43 miRNAs - 358 mRNAs with significantly altered expressions. GO and KEGG functional enrichment analyses identified numerous cancer related genes, furthermore we recognized common miRNAs as key regulatory elements in biological pathways associated with tumorigenesis driven by HPV16. CONCLUSIONS: The multiple molecular changes driven by E6 and E7 oncoproteins resulting in the malignant transformation of HPV16 host cells occur, at least in part, due to the abnormal alteration in expression and function of non-coding RNA molecules through their intracellular competing network.