Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37801044

RESUMO

Aging is associated with cognitive decline via incompletely understood mechanisms. Cerebral microvascular dysfunction occurs in aging, particularly impaired endothelium-mediated dilation. Parenchymal arterioles are bottlenecks of the cerebral microcirculation, and dysfunction causes a mismatch in nutrient demand and delivery, leaving neurons at risk. Extracellular nucleotides elicit parenchymal arteriole dilation by activating endothelial purinergic receptors (P2Y), leading to opening of K+ channels, including inwardly-rectifying K+ channels (KIR2). These channels amplify hyperpolarizing signals, resulting in dilation. However, it remains unknown if endothelial P2Y and KIR2 signaling are altered in brain parenchymal arterioles during aging. We hypothesized that aging impairs endothelial P2Y and KIR2 function in parenchymal arterioles. We observed reduced dilation to the purinergic agonist 2-methyl-S-ADP (1 µM) in arterioles from Aged (>24-month-old) mice when compared to Young (4-6 months of age) despite similar hyperpolarization in endothelial cells tubes. No differences were observed in vasodilation or endothelial cell hyperpolarization to activation of small- and intermediate-conductance Ca2+-activated K+ channels (KCa2.3 / KCa3.1) by NS309. Hyperpolarization to 15 mM [K+]E was smaller in Aged than Young mice, despite a paradoxical increased dilation in Aged arterioles to 15 mM [K+]E that was unchanged by endothelium removal. KIR2 Inhibition attenuated vasodilatory responses to 15 mM [K+]E and 1 µM 2-me-S-ADP in both Young and Aged arterioles. Further, we observed a significant increase in myogenic tone in Aged parenchymal arterioles, which was not enhanced by endothelium removal. We conclude that aging impairs endothelial KIR2 channel function in the cerebral microcirculation with possible compensation by smooth muscle cells.

2.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333104

RESUMO

Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. Large conductance Ca 2+ -activated K + channels (BK Ca ) play an essential role in vasodilatory responses and maintenance of myogenic tone in resistance arteries. BK Ca can be modified in a pro-nitro-oxidative environment, resulting in decreased activity and vascular hyper-contractility, which can compromise cerebral blood flow regulation. We hypothesized that reductions in BK Ca function in cerebral arteries, as a consequence of nitro-oxidative stress, are associated with blunted neurovascular responses in the 5x-FAD model of AD. Using pressure myography, we observed that posterior communicating arteries (PComA) from 5 months-old female 5x-FAD mice showed higher spontaneous myogenic tone than wild-type (WT) littermates. Constriction to the BK Ca blocker iberiotoxin (30 nM) was smaller in 5x-FAD than WT, suggesting lower basal BK Ca activity, which was independent of alterations in intracellular Ca 2+ transients or BK Ca mRNA expression. These vascular changes were associated with higher levels of oxidative stress in female 5x-FAD and a higher level of S-nitrosylation in the BK Ca α-subunit. In females, pre-incubation of PComA from 5x-FAD with the reducing agent DTT (10 µM) rescued iberiotoxin-induced contraction. Female 5x-FAD mice showed increased expression of iNOS mRNA, lower resting cortical perfusion atop the frontal cortex, and impaired neurovascular coupling responses. No significant differences between male 5x-FAD and WT were observed for all parameters above. These data suggest that the exacerbation in BK Ca S-nitrosylation contributes to cerebrovascular and neurovascular impairments in female 5x-FAD mice. Significance Statement: Cerebral vascular dysfunction is increasingly recognized as a hallmark of Alzheimer's disease and other dementias. Impaired microvascular regulation can lead to deficits in blood flow to the brain. An intrinsic property of the resistance vasculature is to constrict when pressurized (myogenic tone), generating a vasodilatory reserve. Detrimental over-constriction is prevented by vascular feedback mechanisms, including the opening of large-conductance Ca 2+ -activated K + channels (BK Ca ). Here, using a combination of molecular biology tools with ex vivo and in vivo vascular assessments, we show a novel mechanism associated with BK Ca dysfunction in the cerebral microvasculature of female 5x-FAD mice. We report increased BK Ca S-nitrosylation linked to reduced activity and, consequently, higher basal myogenic tone. These changes were associated with lower perfusion of the frontal cortex and impaired neurovascular reactivity, suggesting that nitro-oxidative stress is an important mechanism of vascular dysfunction in Alzheimer's disease.

3.
J Cereb Blood Flow Metab ; 42(1): 145-161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465229

RESUMO

Transient increases in intracellular Ca2+ activate endothelium-dependent vasodilatory pathways. This process is impaired in cerebral amyloid angiopathy, where amyloid-ß(1-40) accumulates around blood vessels. In neurons, amyloid-ß impairs the Ca2+-permeable N-methyl-D-aspartate receptor (NMDAR), a mediator of endothelium-dependent dilation in arteries. We hypothesized that amyloid-ß(1-40) reduces NMDAR-elicited Ca2+ signals in mouse cerebral artery endothelial cells, blunting dilation. Cerebral arteries isolated from 4-5 months-old, male and female cdh5:Gcamp8 mice were used for imaging of unitary Ca2+ influx through NMDAR (NMDAR sparklets) and intracellular Ca2+ transients. The NMDAR agonist NMDA (10 µmol/L) increased frequency of NMDAR sparklets and intracellular Ca2+ transients in endothelial cells; these effects were prevented by NMDAR antagonists D-AP5 and MK-801. Next, we tested if amyloid-ß(1-40) impairs NMDAR-elicited Ca2+ transients. Cerebral arteries incubated with amyloid-ß(1-40) (5 µmol/L) exhibited reduced NMDAR sparklets and intracellular Ca2+ transients. Lastly, we observed that NMDA-induced dilation of pial arteries is reduced by acute intraluminal amyloid-ß(1-40), as well as in a mouse model of Alzheimer's disease, the 5x-FAD, linked to downregulation of Grin1 mRNA compared to wild-type littermates. These data suggest that endothelial NMDAR mediate dilation via Ca2+-dependent pathways, a process disrupted by amyloid-ß(1-40) and impaired in 5x-FAD mice.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Artérias Cerebrais/metabolismo , Endotélio Vascular/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Receptores de N-Metil-D-Aspartato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA