Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35408712

RESUMO

There is a need for new, cost-effective drugs to treat leishmaniasis. A strategy based on traditional medicine practiced in Bolivia led to the discovery of the 2-substituted quinoline series as a source of molecules with antileishmanial activity and low toxicity. This review documents the development of the series from the first isolated natural compounds through several hundred synthetized molecules to an optimized compound exhibiting an in vitro IC50 value of 0.2 µM against Leishmania donovani, and a selectivity index value of 187, together with in vivo activity on the L. donovani/hamster model. Attempts to establish structure-activity relationships are described, as well as studies that have attempted to determine the mechanism of action. For the latter, it appears that molecules of this series act on multiple targets, possibly including the immune system, which could explain the observed lack of drug resistance after in vitro drug pressure. We also show how nanotechnology strategies could valorize these drugs through adapted formulations and how a mechanistic targeting approach could generate new compounds with increased activity.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose , Quinolinas , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Cricetinae , Leishmaniose/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Relação Estrutura-Atividade
2.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431992

RESUMO

Quinoline derivatives and especially quinolones are considered as privileged structures in medicinal chemistry and are often associated with various biological properties. We recently isolated a series of original monoterpenyl quinolones from the bark of Codiaeum peltatum. As this extract was found to have a significant inhibitory activity against a Leishmania species, we decided to study the anti-leishmanial potential of this type of compound. Leishmaniasis is a serious health problem affecting more than 12 million people in the world. Available drugs cause harmful side effects and resistance for some of them. With the aim of finding anti-leishmanial compounds, we developed a synthetic strategy to access natural quinolones and analogues derived from zanthosimuline. We showed the versatility of this natural compound toward cyclization conditions, leading to various polycyclic quinolone-derived structures. The natural and synthetic compounds were evaluated against amastigote forms of Leishmania infantum. The results obtained confirmed the interest of this family of natural compounds but also revealed promising activities for some intermediates deriving from zanthosimuline. Following the same synthetic strategy, we then prepared 14 new analogues. In this work, we identified two promising molecules with good activities against intramacrophage L. infantum amastigotes without any cytotoxicity. We also showed that slight changes in amide functional groups affect drastically their anti-parasitic activity.


Assuntos
Antiprotozoários , Leishmania infantum , Quinolonas , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/química , Leishmania infantum/efeitos dos fármacos , Quinolonas/farmacologia
3.
J Antimicrob Chemother ; 76(10): 2640-2650, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34212184

RESUMO

BACKGROUND: This study aimed to investigate compounds acting on the host cell machinery to impair parasite installation with the possible advantage of limiting drug resistance. The strategy therefore consisted of selecting compounds that are poorly active on the axenic parasite, but very active on the intramacrophage form of Leishmania. OBJECTIVES: To identify a drug candidate from focused screening of adamantamine derivatives that can inhibit the development of Leishmania infantum in macrophages. METHODS: In vitro screening was performed on a library of 142 adamantamine derivatives with axenic and intramacrophage forms of L. infantum, as well as cytotoxicity assays, allowing selection of the most promising compound. Absorption, distribution, metabolism and excretion (ADME) experiments, including pharmacokinetics and microsomal stability, were performed and finally the physicochemical stability of the compound was investigated to assess its suitability for further drug development. RESULTS: VP343 was identified first in vitro, with a CC50 value of 63.7 µM and an IC50 value of 0.32 µM for L. infantum intramacrophage amastigotes and then in vivo, with a 59% reduction of the liver parasite burden after oral administration at 10 mg/kg/day for 5 days. In addition, the ADME data were compatible with moving this compound further through the antileishmanial drug candidate pipeline. CONCLUSIONS: VP343 has the properties of a good drug candidate and merits further investigations.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose Visceral , Preparações Farmacêuticas , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose Visceral/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C
4.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799883

RESUMO

Leishmaniasis is a vector-borne disease caused by the protozoan parasite Leishmania found in tropical and sub-tropical areas, affecting 12 million people around the world. Only few treatments are available against this disease and all of them present issues of toxicity and/or resistance. In this context, the development of new antileishmanial drugs specifically directed against a therapeutic target appears to be a promising strategy. The GDP-Mannose Pyrophosphorylase (GDP-MP) has been previously shown to be an attractive therapeutic target in Leishmania. In this study, a chemical library of 5000 compounds was screened on both L. infantum (LiGDP-MP) and human (hGDP-MP) GDP-MPs. From this screening, oncostemonol D was found to be active on both GDP-MPs at the micromolar level. Ten alkyl-resorcinol derivatives, of which oncostemonols E and J (2 and 3) were described for the first time from nature, were then evaluated on both enzymes as well as on L. infantum axenic and intramacrophage amastigotes. From this evaluation, compounds 1 and 3 inhibited both GDP-MPs at the micromolar level, and compound 9 displayed a three-times lower IC50 on LiGDP-MP, at 11 µM, than on hGDP-MP. As they displayed mild activities on the parasite, these compounds need to be further pharmacomodulated in order to improve their affinity and specificity to the target as well as their antileishmanial activity.


Assuntos
Leishmaniose/tratamento farmacológico , Nucleotidiltransferases/antagonistas & inibidores , Resorcinóis/farmacologia , Animais , Antiprotozoários/farmacologia , Humanos , Leishmania/efeitos dos fármacos , Leishmania/patogenicidade , Camundongos , Nucleotidiltransferases/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Preparações Farmacêuticas , Células RAW 264.7 , Resorcinóis/síntese química , Resorcinóis/química , Bibliotecas de Moléculas Pequenas
5.
Molecules ; 25(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916994

RESUMO

The control of leishmaniases, a complex parasitic disease caused by the protozoan parasite Leishmania, requires continuous innovation at the therapeutic and vaccination levels. Chitosan is a biocompatible polymer administrable via different routes and possessing numerous qualities to be used in the antileishmanial strategies. This review presents recent progress in chitosan research for antileishmanial applications. First data on the mechanism of action of chitosan revealed an optimal in vitro intrinsic activity at acidic pH, high-molecular-weight chitosan being the most efficient form, with an uptake by pinocytosis and an accumulation in the parasitophorous vacuole of Leishmania-infected macrophages. In addition, the immunomodulatory effect of chitosan is an added value both for the treatment of leishmaniasis and the development of innovative vaccines. The advances in chitosan chemistry allows pharmacomodulation on amine groups opening various opportunities for new polymers of different size, and physico-chemical properties adapted to the chosen routes of administration. Different formulations have been studied in experimental leishmaniasis models to cure visceral and cutaneous leishmaniasis, and chitosan can act as a booster through drug combinations with classical drugs, such as amphotericin B. The various architectural possibilities given by chitosan chemistry and pharmaceutical technology pave the way for promising further developments.


Assuntos
Antiprotozoários/administração & dosagem , Quitosana/química , Portadores de Fármacos/química , Vacinas contra Leishmaniose/administração & dosagem , Leishmaniose/tratamento farmacológico , Anfotericina B/química , Anfotericina B/farmacologia , Animais , Antimônio/química , Antiprotozoários/farmacologia , Materiais Biocompatíveis/química , Curcumina/química , Composição de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Vacinas contra Leishmaniose/química , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Paromomicina/química , Triterpenos Pentacíclicos/química , Polímeros/química , Rifampina/química , Selênio/química , Tiomalatos/química , Titânio/química , Triterpenos/química , Ácido Betulínico , Ácido Ursólico
6.
Molecules ; 25(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979089

RESUMO

A chemically diverse range of novel tetraoxanes was synthesized and evaluated in vitro against intramacrophage amastigote forms of Leishmania donovani. All 15 tested tetraoxanes displayed activity, with IC50 values ranging from 2 to 45 µm. The most active tetraoxane, compound LC140, exhibited an IC50 value of 2.52 ± 0.65 µm on L. donovani intramacrophage amastigotes, with a selectivity index of 13.5. This compound reduced the liver parasite burden of L. donovani-infected mice by 37% after an intraperitoneal treatment at 10 mg/kg/day for five consecutive days, whereas miltefosine, an antileishmanial drug in use, reduced it by 66%. These results provide a relevant basis for the development of further tetraoxanes as effective, safe, and cheap drugs against leishmaniasis.


Assuntos
Antiprotozoários/química , Antiprotozoários/uso terapêutico , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/patogenicidade , Tetraoxanos/química , Tetraoxanos/uso terapêutico , Animais , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Camundongos , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/uso terapêutico
7.
Molecules ; 25(21)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139647

RESUMO

Neglected parasitic diseases remain a major public health issue worldwide, especially in tropical and subtropical areas. Human parasite diversity is very large, ranging from protozoa to worms. In most cases, more effective and new drugs are urgently needed. Previous studies indicated that the gold(I) drug auranofin (Ridaura®) is effective against several parasites. Among new gold(I) complexes, the phosphole-containing gold(I) complex {1-phenyl-2,5-di(2-pyridyl)phosphole}AuCl (abbreviated as GoPI) is an irreversible inhibitor of both purified human glutathione and thioredoxin reductases. GoPI-sugar is a novel 1-thio-ß-d-glucopyranose 2,3,4,6-tetraacetato-S-derivative that is a chimera of the structures of GoPI and auranofin, designed to improve stability and bioavailability of GoPI. These metal-ligand complexes are of particular interest because of their combined abilities to irreversibly target the essential dithiol/selenol catalytic pair of selenium-dependent thioredoxin reductase activity, and to kill cells from breast and brain tumors. In this work, screening of various parasites-protozoans, trematodes, and nematodes-was undertaken to determine the in vitro killing activity of GoPI-sugar compared to auranofin. GoPI-sugar was found to efficiently kill intramacrophagic Leishmania donovani amastigotes and adult filarial and trematode worms.


Assuntos
Anti-Helmínticos , Antineoplásicos , Antiprotozoários , Auranofina , Complexos de Coordenação , Ouro , Helmintíase/tratamento farmacológico , Neoplasias/tratamento farmacológico , Infecções por Protozoários/tratamento farmacológico , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Auranofina/química , Auranofina/farmacologia , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Avaliação de Medicamentos , Ouro/química , Ouro/farmacologia , Helmintíase/metabolismo , Helmintíase/patologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Infecções por Protozoários/metabolismo , Infecções por Protozoários/patologia
8.
Bioorg Med Chem Lett ; 29(14): 1710-1713, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31122868

RESUMO

This study describes the synthesis of fluorescent probes as potential substrates for the polyamine transport system (PTS) of Leishmania donovani. A competitive radioassay was used to determine the most efficient probe. We observed that the conjugate spermine-nitrobenzofurazan (Spm-NBD) was able to compete with [3H]-spermidine in L. donovani at a potent IC50 of 60 µM.


Assuntos
Transporte Biológico/fisiologia , Poliaminas/metabolismo , Espermina/síntese química , Animais , Corantes Fluorescentes , Leishmania donovani
9.
Exp Parasitol ; 192: 85-92, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30075233

RESUMO

Amphotericin B (AmB) is effective against visceral leishmaniasis (VL), but the renal toxicity of the conventional form, mixed micelles with deoxycholate (M-AmB), is often dose-limiting, while the less toxic lipid-based formulations such as AmBisome® are very expensive. Two different strategies to improve the therapeutic index of AmB with inexpensive ingredients were evaluated on this work: (i) the heat treatment of the commercial formulation (H-AmB) and (ii) the preparation of an AmB-loaded microemulsion (ME-AmB). M-AmB was heated to 70 °C for 20 min. The resulting product was characterized by UV spectrophotometry and circular dichroism, showing super-aggregates formation. ME-AmB was prepared from phosphate buffer pH 7.4, Tween 80®, Lipoid S100® and Mygliol 812® with AmB at 5 mg/mL. The droplet size, measured by dynamic light scattering, was about 40 nm and transmission electron microscopy confirmed a spherical shape. Rheological analysis showed low viscosity and Newtonian behavior. All the formulations were active in vitro and in vivo against Leishmania donovani (LV9). A selectivity index (CC50 on RAW/IC50 on LV9) higher than 10 was observed for ME-AmB, H-AmB and AmBisome®. Furthermore, no important in vivo toxicity was observed for all the samples. The in-vivo efficacy of the formulations after IV administration was evaluated in Balb/C mice infected with LV9 (three doses of 1 mg/kg AmB) and no significant difference was observed between H-AmB, M-AmB, ME-AmB and AmBisome®. In conclusion, these two inexpensive alternative formulations for AmB showing good efficacy and selectivity for Leishmania donovani merit further investigation.


Assuntos
Anfotericina B/farmacologia , Leishmania donovani/efeitos dos fármacos , Anfotericina B/química , Anfotericina B/economia , Anfotericina B/toxicidade , Animais , Dicroísmo Circular , Cricetinae , Emulsões , Feminino , Temperatura Alta , Concentração Inibidora 50 , Leishmania donovani/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Células RAW 264.7/efeitos dos fármacos , Reologia
10.
Bioorg Med Chem ; 25(1): 84-90, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793448

RESUMO

Thirteen new polyamine derivatives coupled to hydroxybenzotriazole have been synthesized and evaluated for their in vitro antikinetoplastid activity. Trypanosoma Trypanothione reductase (TryR) was envisioned as a potential target. Among all tested molecules, only one compound, a N3-spermidine-benzotriazole derivative, displayed relevant inhibitory activity on this enzyme but was not active on parasites. The corresponding Boc-protected spermidine-benzotriazole was however trypanocidal against Trypanosoma brucei gambiense with an IC50 value of 1µM and was completely devoid of cytotoxicity. On the intramacrophage amastigotes of Leishmania donovani, a N2-spermidine conjugate of this series, exhibited an interesting IC50 value of 3µM associated with both low cytotoxicity against axenic Leishmania donovani. These new compounds are promising leads for the development of antikinetoplastid agents and their targets have to be deciphered.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Humanos , Leishmania donovani/enzimologia , Leishmaniose Visceral/tratamento farmacológico , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Espermidina/análogos & derivados , Espermidina/síntese química , Espermidina/farmacologia , Triazóis/síntese química , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/tratamento farmacológico
11.
J Nat Prod ; 80(4): 1007-1014, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28282127

RESUMO

Three new monoterpene indole alkaloids (1-3) have been isolated from the bark of Geissospermum laeve, together with the known alkaloids (-)-leuconolam (4), geissolosimine (5), and geissospermine (6). The structures of 1-3 were elucidated by analysis of their HRMS and NMR spectroscopic data. The absolute configuration of geissolaevine (1) was deduced from the comparison of experimental and theoretically calculated ECD spectra. The isolation workflow was guided by a molecular networking-based dereplication strategy using an in-house database of monoterpene indole alkaloids. In addition, five known compounds previously undescribed in the Geissospermum genus were dereplicated from the G. laeve alkaloid extract network and were assigned with various levels of identification confidence. The antiparasitic activities against Plasmodium falciparum and Leishmania donovani as well as the cytotoxic activity against the MRC-5 cell line were determined for compounds 1-5.


Assuntos
Antimaláricos/isolamento & purificação , Antiparasitários/isolamento & purificação , Apocynaceae/química , Folhas de Planta/química , Alcaloides de Triptamina e Secologanina/isolamento & purificação , Antimaláricos/química , Antimaláricos/farmacologia , Antiparasitários/química , Antiparasitários/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Guiana Francesa , Humanos , Alcaloides Indólicos/química , Leishmania donovani/efeitos dos fármacos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/farmacologia
12.
Mol Divers ; 20(2): 507-19, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26754628

RESUMO

A series of non-hydrolysable 5'-aryl substituted GDP analogs has been synthesized by reacting 5'-azido-5'-deoxyguanosine with different aryl- and benzyloxy-alkynes. Cu(I) nanoparticles in water were found to be the most efficient catalyst, producing the desired 5'-arylguanosines with good yields. The synthesized compounds were screened for in vitro antileishmanial activity against Leishmania donovani axenic amastigotes and intramacrophage amastigotes stages. The 4-(3-nitrobenzyl)-1,2,3-triazole 5'-substituted guanosine analog was found to be the most active in the series with an IC50 of 8.6 µM on axenic amastigotes. Despite a rather low in vitro antileishmanial activity on the intramacrophage amastigotes, the absence of cytotoxicity on RAW 264.7 macrophages justifies further pharmacomodulations making this antileishmanial series promising.


Assuntos
Alcinos/química , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Azidas/química , Desoxiguanosina/análogos & derivados , Leishmania donovani/efeitos dos fármacos , Animais , Antiprotozoários/química , Antiprotozoários/metabolismo , Química Click , Desoxiguanosina/síntese química , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Desoxiguanosina/farmacologia , Leishmania donovani/enzimologia , Manose-6-Fosfato Isomerase/química , Manose-6-Fosfato Isomerase/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica
13.
J Infect Dis ; 212(9): 1439-48, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25883390

RESUMO

Sterol 14α-demethylases (CYP51) are the enzymes essential for sterol biosynthesis. They serve as clinical targets for antifungal azoles and are considered as targets for treatment of human Trypanosomatidae infections. Recently, we have shown that VNI, a potent and selective inhibitor of trypanosomal CYP51 that we identified and structurally characterized in complex with the enzyme, can cure the acute and chronic forms of Chagas disease. The purpose of this work was to apply the CYP51 structure/function for further development of the VNI scaffold. As anticipated, VFV (R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide, the derivative designed to fill the deepest portion of the CYP51 substrate-binding cavity, reveals a broader antiprotozoan spectrum of action. It has stronger antiparasitic activity in cellular experiments, cures the experimental Chagas disease with 100% efficacy, and suppresses visceral leishmaniasis by 89% (vs 60% for VNI). Oral bioavailability, low off-target activity, favorable pharmacokinetics and tissue distribution characterize VFV as a promising new drug candidate.


Assuntos
Antiprotozoários/farmacologia , Benzamidas/farmacologia , Doença de Chagas/tratamento farmacológico , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/química , Leishmaniose Visceral/tratamento farmacológico , Oxidiazóis/farmacologia , Animais , Antiprotozoários/farmacocinética , Benzamidas/farmacocinética , Biotransformação , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Modelos Animais de Doenças , Feminino , Humanos , Imidazóis/farmacologia , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/efeitos dos fármacos , Estrutura Molecular , Oxidiazóis/farmacocinética , Ratos , Relação Estrutura-Atividade , Distribuição Tecidual , Trypanosoma cruzi/efeitos dos fármacos
14.
Bioorg Med Chem Lett ; 25(2): 207-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25499437

RESUMO

A structure-activity relationship study on polyamine derivatives led to the synthesis and the determination of antikinetoplastid activity of 17 compounds. Among them, a spermidine derivative (compound 13) was specifically active in vitro against Leishmania donovani axenic amastigotes (IC50 at 5.4µM; Selectivity Index >18.5) and a spermine derivative (compound 28) specifically active against Trypanosoma brucei gambiense (IC50 at 1.9µM; Selectivity Index >52).


Assuntos
Antiprotozoários/síntese química , Desenho de Fármacos , Kinetoplastida/efeitos dos fármacos , Putrescina/síntese química , Espermidina/síntese química , Espermina/síntese química , Acilação , Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Leishmania donovani/efeitos dos fármacos , Putrescina/farmacologia , Espermidina/farmacologia , Espermina/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos
15.
Microorganisms ; 12(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543525

RESUMO

Free-living amoebae (FLA) are widely distributed protozoa in both natural and artificial environments such as drinking water. In addition to the ability of all FLA to transport various pathogenic microorganisms, certain species, such as Acanthamoeba spp. or Balamuthia mandrillaris, have intrinsic pathogenic abilities and cause severe cerebral infections. Previous work has shown an enrichment of FLA cysts in biofilm developed in upper levels of Drinking Water Storage Towers (DWSTs), suggesting that differences in densities of FLA cysts may play a role in their unequal distribution in the water column. To evaluate this hypothesis, a model of a water column was created for this study and used to analyze the vertical distribution of cysts of the FLA Acanthamoeba castellanii, Vermamoeba vermiformis, and Balamuthia mandrillaris from 0 to 23 weeks. Interestingly, our data showed that the cysts of both A. castellanii and V. vermiformis were enriched in upper water levels during their aging. However, B. mandrillaris cysts were equally distributed in the water column during the entire study. These results show that, in addition to the role of water level variation in the DWST, some FLA cysts can become less dense during their aging, which contributes to their enrichment in upper water and therefore biofilm levels.

16.
Biophys Rev ; 15(4): 751-765, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681109

RESUMO

The pentavalent meglumine antimoniate (MA) is still a first-line drug in the treatment of leishmaniasis in several countries. As an attempt to elucidate its mechanism of action and develop new antimonial drugs with improved therapeutic profile, Sb(V) complexes with different ligands, including ß-cyclodextrin (ß-CD), nucleosides and non-ionic surfactants, have been studied. Interestingly, Sb(V) oxide, MA, its complex with ß-CD, Sb(V)-guanosine complex and amphiphilic Sb(V) complexes with N-alkyl-N-methylglucamide, have shown marked tendency to self-assemble in aqueous solutions, forming nanoaggregates, hydrogel or micelle-like nanoparticles. Surprisingly, the resulting assemblies presented in most cases slow dissociation kinetics upon dilution and a strong influence of pH, which impacted on their pharmacokinetic and therapeutic properties against leishmaniasis. To explain this unique property, we raised the hypothesis that multiple pnictogen bonds could contribute to the formation of these assemblies and their kinetic of dissociation. The present article reviews our current knowledge on the structural organization and physicochemical characteristics of Sb-based supramolecular assemblies, as well as their pharmacological properties and potential for treatment of leishmaniasis. This review supports the feasibility of the rational design of new Sb(V) complexes with supramolecular assemblies for the safe and effective treatment of leishmaniasis.

17.
iScience ; 26(11): 108144, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37915600

RESUMO

Antileishmanial chemotherapy is currently limited due to severe toxic side effects and drug resistance. Hence, new antileishmanial compounds based on alternative approaches, mainly to avoid the emergence of drug resistance, are needed. The present work aims to decipher the mechanism of action of an antileishmanial drug candidate, named VP343, inhibiting intracellular Leishmania infantum survival via the host cell. Cell imaging showed that VP343 interferes with the fusion of parasitophorous vacuoles and host cell late endosomes and lysosomes, leading to lysosomal cholesterol accumulation and ROS overproduction within host cells. Proteomic analyses showed that VP343 perturbs host cell vesicular trafficking as well as cholesterol synthesis/transport pathways. Furthermore, a knockdown of two selected targets involved in vesicle-mediated transport, Pik3c3 and Sirt2, resulted in similar antileishmanial activity to VP343 treatment. This work revealed potential host cell pathways and targets altered by VP343 that would be of interest for further development of host-directed antileishmanial drugs.

18.
Front Pharmacol ; 14: 1100542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342590

RESUMO

High prevalence of parasitic or bacterial infectious diseases in some world areas is due to multiple reasons, including a lack of an appropriate health policy, challenging logistics and poverty. The support to research and development of new medicines to fight infectious diseases is one of the sustainable development goals promoted by World Health Organization (WHO). In this sense, the traditional medicinal knowledge substantiated by ethnopharmacology is a valuable starting point for drug discovery. This work aims at the scientific validation of the traditional use of Piper species ("Cordoncillos") as firsthand anti-infectious medicines. For this purpose, we adapted a computational statistical model to correlate the LCMS chemical profiles of 54 extracts from 19 Piper species to their corresponding anti-infectious assay results based on 37 microbial or parasites strains. We mainly identified two groups of bioactive compounds (called features as they are considered at the analytical level and are not formally isolated). Group 1 is composed of 11 features being highly correlated to an inhibiting activity on 21 bacteria (principally Gram-positive strains), one fungus (C. albicans), and one parasite (Trypanosoma brucei gambiense). The group 2 is composed of 9 features having a clear selectivity on Leishmania (all strains, both axenic and intramacrophagic). Bioactive features in group 1 were identified principally in the extracts of Piper strigosum and P. xanthostachyum. In group 2, bioactive features were distributed in the extracts of 14 Piper species. This multiplexed approach provided a broad picture of the metabolome as well as a map of compounds putatively associated to bioactivity. To our knowledge, the implementation of this type of metabolomics tools aimed at identifying bioactive compounds has not been used so far.

19.
Front Cell Dev Biol ; 10: 982897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172275

RESUMO

Acanthamoeba castellanii is a widespread Free-Living Amoeba (FLA) that can cause severe ocular or cerebral infections in immunocompetent and immunocompromised patients, respectively, besides its capacity to transport diverse pathogens. During their life cycle, FLA can alternate between a vegetative form, called a trophozoite, and a latent and resistant form, called a cyst. This resistant form is characterized by the presence of a cell wall containing two layers, namely the ectocyst and the endocyst, mainly composed of cellulose and proteins. In the present work, we aimed to stimulate Acanthamoeba castellanii excystment by treating their cysts with a cellulolytic enzyme, i.e., cellulase, or two proteolytic enzymes, i.e., collagenase and pepsin. While 11 days were necessary to obtain total excystment in the control at 27°C, only 48 h were sufficient at the same temperature to obtain 100% trophozoites in the presence of 25 U/mL cellulase, 50 U/mL collagenase or 100 U/mL pepsin. Additionally, more than 96% amoebae have excysted after only 24 h with 7.5 U/mL cellulase at 30°C. Nevertheless, no effect of the three enzymes was observed on the excystment of Balamuthia mandrillaris and Vermamoeba vermiformis. Surprisingly, A. castellanii trophozoites excysted in the presence of cellulase displayed a markedly shorter doubling time at 7 h, in comparison to the control at 23 h. Likewise, trophozoites doubled their population in 9 h when both cellulose and cellulase were added to the medium, indicating that Acanthamoeba cyst wall degradation products promote their trophozoite proliferation. The analysis of cysts in epifluorescent microscopy using FITC-lectins and in electron microscopy revealed a disorganized endocyst and a reduction of the intercystic space area after cellulase treatment, implying that these cellular events are preliminary to trophozoite release during excystment. Further studies would be necessary to determine the signaling pathways involved during this amoebal differentiation process to identify new therapeutic targets for the development of anti-acanthamoebal drugs.

20.
Int J Pharm ; 624: 121985, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35820519

RESUMO

Amphotericin B (AmB) is an effective drug to treat visceral leishmaniasis but its use is limited by its poor oral bioavailability. This article describes the in-vivo evaluation of AmB-loaded, lipid-based cochleate systems designed for the oral route. Two different cochleate formulations were studied: one based on the synthetic phospholipid dioleoylphosphatidylserine (DOPS) and another optimized formulation based on a naturally occurring phosphatidylserine (Lipoid PSP70) that would render the formulation more affordable in developing countries. Their antiparasitic activity was evaluated in a mouse model of visceral leishmaniasis. Limited efficacy was observed for the DOPS-based cochleates after three doses of AmB at 1 mg/kg. The Lipoid PSP70-based cochleates were administered either as a buffered suspension or in enteric-coated capsules. AmB-loaded cochleates administered as a suspension at a high dose (3 × 20 mg/kg) exhibited significant antiparasitic activity while AmB-loaded cochleates in enteric-coated capsules at a lower dose (3 × 5 mg/kg) presented a slightly higher significant activity. A pharmacokinetic and biodistribution study in rats was performed with the Lipoid PSP70-based cochleates, with a single oral dose of 7.5 mg AmB/kg. Cochleates in both administration forms led to lower concentrations of Amphotericin B in the plasma than intravenous AmBisome®. However, more accumulation in the organs of interest (liver, spleen) was observed for both presentations of cochleates than for AmBisome® by the oral route. Therefore, cochleate formulations of AmB that could be produced at a cost accessible for developing countries show promise for the treatment of visceral leishmaniasis.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Anfotericina B , Animais , Antiparasitários , Cápsulas , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Camundongos , Ratos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA