Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Chemistry ; 29(3): e202202823, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36200677

RESUMO

The similar reactivity of lanthanides generally leads to statistically populated polynuclear complexes, making the rational design of ordered hetero-lanthanide compounds extremely challenging. Here we report on the site selectivity in hetero-lanthanide tetranuclear complexes afforded by the relatively simple ditopic pyterpyNO ligand (4'-(4-pyridil)-2,2':6',2"-terpyridine N-oxide). The sequential room temperature reaction of RE2 (tta)6 (pyterpyNO)2 (where RE=Y, (1); Eu, (2), Dy, (3) Htta=2-thenoyltrifluoroacetone) with La(tta)3 dme (dme=dimethoxyethane) yielded Y2 La2 (tta)12 (pyterpyNO)2 (4), Dy2 La2 (tta)12 (pyterpyNO)2 (5) and Eu2 La2 (tta)12 (pyterpyNO)2 (6). Single crystals X-ray diffraction studies showed that 4, 5 and 6 are isostructural, featuring a tetranuclear structure with two different metal coordination sites with coordination numbers 8 (CN8) and 9 (CN9). The two smaller cations are mainly bridged by the O-donor atoms of the NO groups of two pyterpyNO ligands (CN8), while the larger lanthanum centres are bound by a terpyridine unit (CN9). Size selectivity has been studied with structural and magnetic studies in the solid state and through 19 F NMR and photoluminescence studies in solution, showing a direct dependence on the difference of ionic radii of the ions and yielding a 91 % selectivity for 4. Furthermore, 19 F NMR, X-ray and PL studies pointed out that the nature of the product is independent from the synthetic route for compound Eu2 Y2 (tta)12 (pyterpyNO)2 (7), keeping the ion selectivity also for a self-assembly reaction. Unexpectedly, these studies have evidenced that selectivity is not exclusively governed by electrostatic interactions related to size dimensions.

2.
Inorg Chem ; 61(1): 265-278, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34904436

RESUMO

Mononuclear rare-earth tris-ß-diketonato complexes RE(tta)3dme [RE = Y (1), La (2), Dy (3), or Eu (4); Htta = 2-thenoylacetone; dme = 1,2-dimethoxyethane] react cleanly at room temperature in a 1:1 molar ratio with the heteroditopic divergent ligand 4'-(4-pyridyl)-2,2':6',2″-terpyridine N-oxide (pyterpyNO) to yield RE2(tta)6(pyterpyNO)n, where n = 2 for RE = Y (5), Dy (6), or Eu (7) and n = 3 for RE = La (8). The crystal structure of 5 revealed a dinuclear compound with two pyterpyNO's bridging through the oxygen atom in a hypodentate mode leaving the terpyridine moieties uncoordinated. Using a metal:pyterpyNO molar ratio of 2 for RE = Y (9), Dy (10), or Eu (11), it was possible to isolate the molecular complexes RE4(tta)12(pyterpyNO)2, while using a 5:3 molar ratio, the product La5(tta)12(pyterpyNO)3 (12) can be obtained. 89Y nuclear magnetic resonance spectroscopy revealed two different yttrium centers at room temperature for 9. An X-ray diffraction study of 10 showed a symmetrical tetranuclear structure resulting from the coordination of two Dy(tta)3 fragments to the two hypodentate terpyridines of the dinuclear unit and presenting two different coordination sites for metals with coordination numbers of 8 and 9. Magnetic studies of 6 and 10 revealed the presence of an antiferromagnetic interaction between the two Dy(III) atoms bound by the NO bridges. These compounds displayed a slow relaxing magnetization through Orbach (6) and Raman (10) processes in the absence of an applied magnetic field; the rate increased upon application of a 1 kOe field. 7 and 11 showed a bright red emission typical of Eu3+. The two complexes have similar emission properties mainly determined by the employed ß-diketonato ligands.

3.
Inorg Chem ; 61(31): 12118-12128, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876616

RESUMO

Using the 1-(m-tolyl)-1H-1,2,3-triazole-4-(4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) (TlTrzNIT) radical and metal ß-diketonate complexes [M(hfac)2(H2O)2], where hfac is hexafluoroacetylacetonato, three new 2p-3d heterospin complexes were synthesized. Their structures were solved using single crystal X-ray diffraction data, and magnetic investigation was performed by DC and AC measurements and multifrequency EPR spectroscopy. Compounds 1 and 2 are isostructural complexes with molecular formula [M3(TlTrzNIT)2(hfac)6] (MII = Mn or Cu) while compound 3 is the mononuclear [Co(TlTrzNIT)(hfac)2] complex. In all complexes, the radical acts as a bidentate ligand through the oxygen atom of the nitroxide moiety and the nitrogen atom from the triazole group. Furthermore, in compounds 1 and 2, the TlTrzNIT is bridge-coordinated between two metal centers, leading to the formation of trinuclear complexes. The fitting of the static magnetic behavior reveals antiferromagnetic and ferromagnetic intramolecular interactions for complexes 1 and 2, respectively. The EPR spectra of 1 are well described by an isolated ferrimagnetic S = 13/2 (= 5/2 - 1/2 + 5/2 - 1/2 + 5/2) ground state with a biaxial zero-field splitting (ZFS) interaction characterized, respectively, by 2nd order axial and rhombic parameters, D and E, such that E/D is close to the maximum of 0.33. Meanwhile, EPR spectra for 2 are explained in terms of a ferromagnetic model with weakly anisotropic Cu-radical exchange interactions, giving rise to an isolated S = 5/2 (= 5 × 1/2) ground state with both an anisotropic g tensor and a weak ZFS interaction. Complex 2 represents one of only a few examples of Cu-radical moieties with measurable exchange anisotropy.

4.
Inorg Chem ; 60(2): 892-907, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33393287

RESUMO

Seven-coordinate, pentagonal-bipyramidal (PBP) complexes [Ln(bbpen)Cl] and [Ln(bbppn)Cl], in which Ln = Tb3+ (products I and II), Eu3+ (III and IV), and Gd3+ (V and VI), with bbpen2- = N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine and bbppn2- = N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)-1,2-propanediamine, were synthesized and characterized by single-crystal X-ray diffraction analysis, alternating-current magnetic susceptibility measurements, and photoluminescence (steady-state and time-resolved) spectroscopy. Under a static magnetic field of 0.1 T, the Tb3+ complexes I and II revealed single-ion-magnet behavior. Also, upon excitation at 320 nm at 300 K, I and II presented very high absolute emission quantum yields (0.90 ± 0.09 and 0.92 ± 0.09, respectively), while the corresponding Eu3+ complexes III and IV showed no photoluminescence. Detailed theoretical calculations on the intramolecular energy-transfer rates for the Tb3+ products indicated that both singlet and triplet ligand excited states contribute efficiently to the overall emission performance. The expressive quantum yields, QLnL, measured for I and II in the solid state and a dichloromethane solution depend on the excitation wavelength, being higher at 320 nm. Such a dependence was rationalized by computing the intersystem crossing rates (WISC) and singlet fluorescence lifetimes (τS) related to the population dynamics of the S1 and T1 levels. Thin films of product II showed high air stability and photostability upon continuous UV illumination, which allowed their use as downshifting layers in a green light-emitting device (LED). The prototypes presented a luminous efficacy comparable with those found in commercial LED coatings, without requiring encapsulation or dispersion of II in host matrixes. The results indicate that the PBP environment determined by the ethylenediamine (en)-based ligands investigated in this work favors the outstanding optical properties in Tb3+ complexes. This work presents a comprehensive structural, chemical, and spectroscopic characterization of two Tb3+ complexes of mixed-donor, en-based ligands, focusing on their outstanding optical properties. They constitute good molecular examples in which both triplet and singlet excited states provide energy to the Tb3+ ion and lead to high values of QLnL.

5.
Chemistry ; 24(35): 8857-8868, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29655240

RESUMO

The homoleptic mononuclear compound [Co(bpp-COOMe)2 ](ClO4 )2  (1) (bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate) crystallizes in the monoclinic C2/c space group, and the cobalt(II) ion possesses a pseudo-octahedral environment given by the two mer-coordinated tridentate ligands. Direct-current magnetic data, single-crystal torque magnetometry, and EPR measurements disclosed the easy-axis nature of this cobalt(II) complex, which shows single-molecule magnet behavior when a static field is applied in alternating-current susceptibility measurements. Diamagnetic dilution in the zinc(II) analogue [Zn(bpp-COOMe)2 ](ClO4 )2  (2) afforded the derivative [Zn0.95 Co0.05 (bpp-COOMe)2 ](ClO4 )2  (3), which exhibits slow relaxation of magnetization even in zero field thanks to the reduction of dipolar interactions. Theoretical calculations confirmed the overall electronic structure and the magnetic scenario of the compound as drawn by experimental data, thus confirming the spin-phonon Raman relaxation mechanism, and a direct quantum tunneling in the ground state as the most plausible relaxation pathway in zero field.

6.
Inorg Chem ; 55(9): 4141-51, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27058604

RESUMO

The combination of the divergent bis-pyridyl linking ligands 1,2-bis(4-pyridyl)ethane (1,2-bpe), 4,4'-trans-azopyridine (azpy), and 1,3-bis(4-pyridyl)propane (1,3-bpp) with cobalt and 3,5-di-tert-butyldioxolene (3,5-dbdiox) ligands has afforded the complexes [Co(3,5-dbdiox)2(1,2-bpe)]∞ (1), [Co(3,5-dbdiox)2(azpy)]∞ (2), [trans-Co(3,5-dbdiox)2(1,3-bpp)]∞ (3a), and [cis-Co(3,5-dbdiox)2(1,3-bpp)]∞ (3b). All species are 1D coordination polymers that crystallize as solvated forms; the geometric isomers 3a,b cocrystallize. Complexes 1, 2, and 3a exhibit around the Co centers a trans disposition of the N-donor atoms from the pyridyl linkers, while an unusual cis disposition is evident in 3b. Single-crystal X-ray structural analysis at 100 or 130 K of solvated forms of these complexes indicates that all complexes possess the {Co(III)(3,5-dbcat)(3,5-dbsq)} (3,5-dbcat = 3,5-di-tert-butylcatecholate; 3,5-dbsq = 3,5-di-tert-butylsemiquinonate) charge distribution at the temperature of data collection. Variable-temperature magnetic susceptibility studies reveal that 1, 1·1.5MeCN·2H2O, 2·2EtOH, and 3·MeCN·H2O (3 = 3a·3b) all exhibit thermally induced valence tautomeric (VT) transitions above 200 K. Multiple heating and cooling cycles indicate that in some cases the behavior is strongly dependent on desolvation processes. Most notably, further desolvation of 1·1.5MeCN·2H2O above 340 K affords χmT values that suggest unusual ferromagnetic coupling in the {hs-Co(II)(3,5-dbsq)2} valence tautomer. Compound 3·MeCN·H2O exhibits a two-step VT transition that may be ascribed to the presence of the cis and trans geometric isomers. Compounds 1, 1·1.5MeCN·2H2O, 2·2EtOH, and 3·MeCN·H2O all also exhibit a single photoinduced VT transition, comparable to those generally observed for nonpolymeric cobalt-dioxolene complexes.

7.
Inorg Chem ; 55(19): 9537-9548, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27636564

RESUMO

This study reports the static and dynamic magnetic characterization of two mononuclear tetrahedral CoII complexes, [Co{iPr2P(E)NP(E)iPr2}2], where E = S (CoS4) and Se (CoSe4), which behave as single-ion magnets (SIMs). Low-temperature (15 K) single-crystal X-ray diffraction studies point out that the two complexes exhibit similar structural features in their first coordination sphere, but a disordered peripheral iPr group is observed only in CoS4. Although the latter complex crystallizes in an axial space group, the observed structural disorder leads to larger transverse magnetic anisotropy for the majority of the molecules compared to CoSe4, as confirmed by electron paramagnetic resonance spectroscopy. Static magnetic characterization indicates that both CoS4 and CoSe4 show easy-axis anisotropy, with comparable D values (∼-30 cm-1). Moreover, alternating-current susceptibility measurements on these CoII complexes, magnetically diluted in their isostructural ZnII analogues, highlight the role of dipolar magnetic coupling in the mechanism of magnetization reversal. In addition, our findings suggest that, despite their similar anisotropic features, CoS4 and CoSe4 relax magnetically via different processes. This work provides experimental evidence that solid-state effects may affect the magnetic behavior of SIMs.

8.
Dalton Trans ; 53(23): 9933-9941, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38808660

RESUMO

In this contribution, a terpyridine-based ligand bearing a thioether functionality is used to prepare a new cobalt(II) spin crossover complex: [Co(TerpyPhSMe)2](PF6)2 (1), where TerpyPhSMe is 4'-(4-methylthiophenyl)-2,2':6',2''-terpyridine. Its structure, determined by single crystal X-ray diffraction, reveals a mer coordination of the tridentate terpyridine ligands, leading to a tetragonally compressed octahedron. Intermolecular interactions in the crystal lattice freeze the complex in the high spin state in the solid state at all temperatures, as indicated by magnetometry and Electron Paramagnetic Resonance (EPR) spectra. When dissolved in acetonitrile, however, temperature dependent electronic, 1H-NMR and EPR spectra highlight an entropy-driven spin crossover transition, whose thermodynamics parameters have been determined. This is the first report of a cobalt(II) SCO complex featuring a thioether group, allowing its implementation in chemically grown bistable monolayers and may open important perspectives for the use of such systems in molecular spintronics.

9.
J Inorg Biochem ; 256: 112573, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678913

RESUMO

This paper describes the synthesis, structural analysis, as well as the magnetic and spectroscopic characterizations of three new dicopper(II) complexes with dinucleating phenol-based ligands containing different thioether donor substituents: aromatic (1), aliphatic (2) or thiophene (3). Temperature-dependent magnetometry reveals the presence of antiferromagnetic coupling for 1 and 3 (J = -2.27 cm-1 and -5.01 cm-1, respectively, H = -2JS1S2) and ferromagnetic coupling for 2 (J = 5.72 cm-1). Broken symmetry DFT calculations attribute this behavior to a major contribution from the dz2 orbitals for 1 and 3, and from the dx2-y2 orbitals for 2, along with the p orbitals of the oxygens. The bioinspired catalytic activities of these complexes related to catechol oxidase were studied using 3,5-di-tert-butylcatechol as substrate. The order of catalytic rates for the substrate oxidation follows the trend 1 > 2 > 3 with kcat of (90.79 ± 2.90) × 10-3 for 1, (64.21 ± 0.99) × 10-3 for 2 and (14.20 ± 0.32) × 10-3 s-1 for 3. The complexes also cleave DNA through an oxidative mechanism with minor-groove preference, as indicated by experimental and molecular docking assays. Antimicrobial potential of these highly active complexes has shown that 3 inhibits both Staphylococcus aureus bacterium and Epidermophyton floccosum fungus. Notably, the complexes were found to be nontoxic to normal cells but exhibited cytotoxicity against epidermoid carcinoma cells, surpassing the activity of the metallodrug cisplatin. This research shows the multifaceted properties of these complexes, making them promising candidates for various applications in catalysis, nucleic acids research, and antimicrobial activities.


Assuntos
Antineoplásicos , Complexos de Coordenação , Oxirredução , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Sulfetos/química , Sulfetos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Platina/química , Platina/farmacologia , Linhagem Celular Tumoral
10.
J Am Chem Soc ; 135(22): 8304-23, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23663158

RESUMO

A family of dinuclear cobalt complexes with bridging bis(dioxolene) ligands derived from 3,3,3',3'-tetramethyl-1,1'-spirobis(indane-5,5',6,6'-tetrol) (spiroH4) and ancillary ligands based on tris(2-pyridylmethyl)amine (tpa) has been synthesized and characterized. The bis(dioxolene) bridging ligand is redox-active and accessible in the (spiro(cat-cat))(4-), (spiro(SQ-cat))(3-), and (spiro(SQ-SQ))(2-) forms, (cat = catecholate, SQ = semiquinonate). Variation of the ancillary ligand (Mentpa; n = 0-3) by successive methylation of the 6-position of the pyridine rings influences the redox state of the complex, governing the distribution of electrons between the cobalt centers and the bridging ligands. Pure samples of salts of the complexes [Co2(spiro)(tpa)2](2+) (1), [Co2(spiro)(Metpa)2](2+) (2), [Co2(spiro)(Me2tpa)2](2+) (3), [Co2(spiro)(Me3tpa)2](2+) (4), [Co2(spiro)(tpa)2](3+) (5), and [Co2(spiro)(tpa)2](4+) (6) have been isolated, and 1, 4, and 6 have been characterized by single crystal X-ray diffraction. Studies in the solid and solution states using multiple techniques reveal temperature invariant redox states for 1, 2, and 4-6 and provide clear evidence for four different charge distributions: 1 and 2 are Co(III)-(spiro(cat-cat))-Co(III), 4 is Co(II)-(spiro(SQ-SQ))-Co(II), 5 is Co(III)-(spiro(SQ-cat))-Co(III), and 6 is Co(III)-(spiro(SQ-SQ))-Co(III). Of the six complexes, only 3 shows evidence of temperature dependence of the charge distribution, displaying a rare thermally induced two-step valence tautomeric transition from the Co(III)-(spiro(cat-cat))-Co(III) form to Co(II)-(spiro(SQ-cat))-Co(III) and then to Co(II)-(spiro(SQ-SQ))-Co(II) in both solid and solution states. This is the first time a two-step valence tautomeric (VT) transition has been observed in solution. Partial photoinduction of the VT transition is also possible in the solid. Magnetic and spectroscopic studies of 5 and 6 reveal that spiroconjugation of the bis(dioxolene) ligand allows electronic interaction across the spiro bridge, suggesting that thermally activated vibronic coupling between the two cobalt-dioxolene moieties plays a key role in the two-step transition evident for 3.


Assuntos
Cobalto/química , Dioxolanos/química , Compostos Organometálicos/química , Compostos de Espiro/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução
11.
Inorg Chem ; 52(20): 11798-805, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24090074

RESUMO

A series of dinuclear cobalt complexes of general formula [Co(Mentpa)(diox-S-diox)Co(Mentpa)](PF6)2·MeOH (n = 0, 2, 3) was prepared through the synthesis of the bis-bidentate ligand 6,6'-((1,4-phenylenebis(methylene))bis(sulfanediyl))bis(3,5-di-tert-butyl-benzene-1,2-diol) (diox-S-diox). The ancillary ligands Mentpa are obtained by the tripodal tris(2-pyridylmethyl)amine (tpa) ligand through successive introduction of methyl groups into the 6 position of the pyridine moieties. As expected, the steric hindrance induced by this substitution modulates the redox properties of the metal acceptor, determining the charge distribution of the metal-dioxolene adduct at room temperature. Magnetic measurements and X-ray photoelectron and X-ray absorption spectroscopies indicate that the charge distributions low-spin-Co(III)-catecholate and high-spin-Co(II)-semiquinonate characterize the complexes formed by the tpa and Me3tpa tetradentate ligands, respectively. The complex formed by the Me2tpa ligand undergoes a thermal- and light-induced interconversion of the two states, in agreement with the existence of a valence tautomeric equilibrium. All complexes were stable and behaved reproducibly under X-ray irradiation. This work points out a fast and simple chemical approach to structurally and electronically modify the catechol ring while leaving its coordination capabilities unaffected. These findings afford a robust chemical method to prepare sulfur-functionalized dioxolene ligands as new molecular bricks for chemical functionalization of noble metal surfaces with this class of molecular switches.

12.
Dalton Trans ; 52(7): 2036-2050, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36692040

RESUMO

During the last few years, a large number of mononuclear Co(II) complexes of various coordination geometries have been explored as potential single ion magnets (SIMs). In the work presented herein, the Co(II) S = 3/2 tetrahedral [Co{(OPPh2)(EPPh2)N}2], E = S, Se, complexes (abbreviated as CoO2E2), bearing chalcogenated mixed donor-atom imidodiphosphinato ligands, were studied by both experimental and computational techniques. Specifically, direct current (DC) magnetometry provided estimations of their zero-field splitting (zfs) axial (D) and rhombic (E) parameter values, which were more accurately determined by a combination of far-infrared magnetic spectroscopy and high-frequency and -field EPR spectroscopy studies. The latter combination of techniques was also implemented for the S = 3/2 tetrahedral [Co{(EPiPr2)2N}2], E = S, Se, complexes, confirming the previously determined magnitude of their zfs parameters. For both pairs of complexes (E = S, Se), it is concluded that the identity of the E donor atom does not significantly affect their zfs parameters. High-resolution multifrequency EPR studies of CoO2E2 provided evidence of multiple conformations, which are more clearly observed for CoO2Se2, in agreement with the structural disorder previously established for this complex by X-ray crystallography. The CoO2E2 complexes were shown to be field-induced SIMs, i.e., they exhibit slow relaxation of magnetization in the presence of an external DC magnetic field. Advanced quantum-chemical calculations on CoO2E2 provided additional insight into their electronic and structural properties.

13.
RSC Adv ; 13(29): 20050-20057, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37409047

RESUMO

This work reports the synthesis, structural, spectroscopic and magnetic investigation of two complexes, [Co(bmimapy)(3,5-DTBCat)]PF6·H2O (1) and [Co(bmimapy)(TCCat)]PF6·H2O (2), where bmimapy is an imidazolic tetradentate ancillary ligand and 3,5-DTBCat and TCCat are the 3,5-di-tert-butyl-catecholate and tetrachlorocatecholate anions, respectively. Their structures have been elucidated using single crystal X-ray diffraction, showing a pseudo-octahedral cobalt ion bound to a chelating dioxolene ligand and the ancillary bmimapy ligand in a folded conformation. Magnetometry displayed an entropy-driven, incomplete, Valence Tautomeric (VT) process for 1 in the 300-380 K temperature range, while 2 displayed a temperature independent, diamagnetic low-spin cobalt(iii)-catecholate charge distribution. This behaviour was interpreted on the basis of the cyclic voltammetric analysis, allowing the estimation of the free energy difference associated with the VT interconversion of +8 and +96 kJ mol-1 for 1 and 2, respectively. A DFT analysis of this free energy difference highlighted the ability of the methyl-imidazole pendant arm of bmimapy favouring the onset of the VT phenomenon. This work introduces the imidazolic bmimapy ligand to the scientific community working in the field of valence tautomerism, increasing the library of ancillary ligands to prepare temperature switchable molecular magnetic materials.

14.
Chemistry ; 18(36): 11379-87, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22847923

RESUMO

The reaction of [Ln(hfac)(3)]·2H(2)O and pyridine-N-oxide (PyNO) leads to isostructural dimers of the formula [Ln(hfac)(3)(PyNO)](2) (Ln=Eu, Gd, Tb, Dy). The Dy derivative shows a remarkable single-molecule magnet behavior with complex hysteresis at 1.4 K. The dynamics of the magnetization features are two relaxation regimes: a thermally activated one at high temperature (τ(0)=(5.62±0.4)×10(-11) s and Δ=(167±1) K) and a quantum tunneling regime at low temperature with a tunneling frequency of 0.42 Hz. The analysis of the Gd derivative evidences intradimer antiferromagnetic interactions (J=(-0.034±0.001) cm(-1)). Moreover, the Eu, Tb, and Dy derivatives are luminescent with quantum yield of 51, 53, and 0.1%, respectively. The thermal investigation of [Dy(hfac)(3)(PyNO)](2) shows that the dimers can be sublimated intact, suggesting their possible exploit as active materials for surface-confined nanostructures to be investigated by fluorimetry methods.

15.
Inorg Chem ; 51(22): 12218-29, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23126263

RESUMO

Four lanthanide-based nitronyl nitroxide radical cyclic molecular clusters of formula [Ln(hfac)3(NITPhPO(OEt)2)]2 (Ln(III) = Gd (1), Tb (2A and 2B), and Dy (3) and NITPhPO(OEt)2 = 4'-[2-(1-oxyl-3-4,4,5,5-tetramethylimidazoline)phenyl]diethoxylphosphine oxide) have been synthesized. Their X-ray structures have been solved and highlight two different crystal packings. For the particular case of the Tb(III) derivative, both of them can be obtained. In 2A, the molecules are well-isolated, while 2B shows short contacts between N-O radical groups. Static magnetic studies on the Gd(III) derivative (1) demonstrate that lanthanides and radicals are ferromagnetically coupled (J = 3.46 ± 0.04 cm(-1)). Dynamic magnetic studies show that both compounds 2A and 2B exhibit single molecule magnet behavior. A comparison of their magnetic behaviors highlights that the crystal packing has a crucial influence on the temperature range in which the SMM behavior is observed. In the case of the well-insulated Tb(III)-based derivative (2A), the SMM behavior is observed at higher temperatures and lower frequencies than for the one that presents close-packing between the molecules (2B). Comparisons are then possible only under an applied external magnetic field (0.2 T) with Δ = 27.5(6) and 21.0(5) K and τ0 = 2.64(25) × 10(-9) and 1.76(20) × 10(-9) s for 2A and 2B, respectively.

16.
Inorg Chem ; 51(7): 3944-6, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22432512

RESUMO

A dinuclear cobalt complex with cobalt centers bridged by a bis(dioxolene) ligand exhibits a rare two-step valence tautomeric transition.

17.
Chem Sci ; 13(20): 5860-5871, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685802

RESUMO

A common criterion for designing performant single molecule magnets and pseudocontact shift tags is a large magnetic anisotropy. In this article we present a dysprosium complex chemically designed to exhibit strong easy-axis type magnetic anisotropy that is preserved in dichloromethane solution at room temperature. Our detailed theoretical and experimental studies on the magnetic properties allowed explaining several features typical of highly performant SMMs. Moreover, the NMR characterization shows remarkably large chemical shifts, outperforming the current state-of-the art PCS tags.

18.
Inorg Chem ; 49(16): 7565-76, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20690767

RESUMO

The self-assembly of [Nb(IV)(CN)(8)](4-) with different 3d metal centers in an aqueous solution and an excess of pyrazole resulted in the formation of four 3D isostructural compounds {[M(II)(pyrazole)(4)](2)[Nb(IV)(CN)(8)].4H(2)O}(n), where M(II) = Mn, Fe, Co, and Ni for 1-4, respectively. All four assemblies crystallize in the same I4(1)/a space group and show identical cyanido-bridged structures decorated with pyrazole molecules coordinated to M(II) centers. All four compounds show also long-range magnetic ordering below 24, 8, 6, and 13 K, respectively. A thorough analysis of the structural and magnetic data utilizing the molecular field model has allowed for an estimation of the values of coupling constants J(M-Nb) attributed to the one type of M(II)-NC-Nb(IV) linkage existing in 1-4. The J(M-Nb) values increase monotonically from -6.8 for 1 through -3.1 for 2 and +3.5 for 3, to +8.1 cm(-1) for 4 and are strongly correlated with the number of unpaired electrons on the M(II) metal center. Average orbital contributions to the total exchange coupling constants J(M-Nb) have also been identified and calculated: antiferromagnetic J(AF) = -21.6 cm(-1) originating from the d(xy), d(xz), and d(yz) orbitals of M(II) and ferromagnetic J(F) = +15.4 cm(-1) originating from d(z(2)) and d(x(2)-y(2)) orbitals of M(II). Antiferromagnetic interaction is successively weakened in the 1-4 row with each additional electron on the t(2g) level, which results in a change of the sign of J(M-Nb) and the nature of long-range magnetic ordering from ferrimagnetic in 1 and 2 to ferromagnetic in 3 and 4.

19.
J Am Chem Soc ; 131(35): 12817-28, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19722722

RESUMO

A colloidal two-step seeded-growth approach has been devised to selectively synthesize three-component magnetic/semiconductor hybrid nanocrystals (HNCs) with a matchstick-like profile and tunable geometric parameters. The newly developed heterostructures individually comprise a single metallic Co head connected to either apexes of one rod-shaped section made of a CdSe core eccentrically embedded in a CdS shell. The specific topological arrangement realized arises from the peculiar anisotropic reactivity of the noncentrosymmetric CdSe@CdS core@shell nanorods that have been used as substrates to seed heterogeneous nucleation of Co in a surfactant-free environment from an organometallic precursor. The HNCs retain appreciable fluorescent emission in spite of photoexcited charge transfer from the semiconductor to the metal domain and exhibit unusual ferromagnetic-like behavior at room temperature.

20.
Chemistry ; 15(26): 6456-67, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19462389

RESUMO

Tunable single-molecule magnets: The spin-level landscape in a series of Fe(III) (4) single-molecule magnets with propeller-like structure was analyzed by means of high-frequency EPR spectroscopy. The zero-field splitting parameter D of the ground S=5 spin state correlates strongly with the pitch of the propeller gamma (see picture), and thus provides a simple link between molecular structure and magnetic behavior.We report three novel tetrairon(III) single-molecule magnets with formula [Fe(4)(L)(2)(dpm)(6)] (Hdpm=2,2,6,6-tetramethylheptane-3,5-dione), prepared by using pentaerythritol monoether ligands H(3)L=R'OCH(2)C(CH(2)OH)(3) with R'=allyl (1), (R,S)-2-methyl-1-butyl (2), and (S)-2-methyl-1-butyl (3), along with a new crystal phase of the complex containing H(3)L=11-(acetylthio)-2,2-bis(hydroxymethyl)- undecan-1-ol (4). High-frequency EPR (HF-EPR) spectra at low temperature were collected on powder samples in order to determine the zero-field splitting (zfs) parameters in the ground S=5 spin state. In 1-4 and in other eight isostructural compounds previously reported, a remarkable correlation is found between the axial zfs parameter D and the pitch gamma of the propeller-like structure. The relationship is directly demonstrated by 1, which features both structurally and magnetically inequivalent molecules in the crystal. The dynamics of magnetization has been investigated by ac susceptometry, and the results analyzed by master-matrix calculations. The large rhombicities of 2 and 3 were found to be responsible for the fast magnetic relaxation observed in the two compounds. However, complex 3 shows an additional faster relaxation mechanism which is unaccounted for by the set of spin Hamiltonian parameters determined by HF-EPR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA