Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244425

RESUMO

Virus infection causes major rearrangements in the subcellular architecture of eukaryotes, but its impact in prokaryotic cells was much less characterized. Here, we show that infection of the bacterium Bacillus subtilis by bacteriophage SPP1 leads to a hijacking of host replication proteins to assemble hybrid viral-bacterial replisomes for SPP1 genome replication. Their biosynthetic activity doubles the cell total DNA content within 15 min. Replisomes operate at several independent locations within a single viral DNA focus positioned asymmetrically in the cell. This large nucleoprotein complex is a self-contained compartment whose boundaries are delimited neither by a membrane nor by a protein cage. Later during infection, SPP1 procapsids localize at the periphery of the viral DNA compartment for genome packaging. The resulting DNA-filled capsids do not remain associated to the DNA transactions compartment. They bind to phage tails to build infectious particles that are stored in warehouse compartments spatially independent from the viral DNA. Free SPP1 structural proteins are recruited to the dynamic phage-induced compartments following an order that recapitulates the viral particle assembly pathway. These findings show that bacteriophages restructure the crowded host cytoplasm to confine at different cellular locations the sequential processes that are essential for their multiplication.


Assuntos
Bacillus subtilis/virologia , Compartimento Celular , Viroses/patologia , Bacillus subtilis/ultraestrutura , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Capsídeo/metabolismo , Replicação do DNA , DNA Viral/biossíntese , DNA Polimerase Dirigida por DNA , Interações Hospedeiro-Patógeno , Complexos Multienzimáticos , Fatores de Tempo , Vírion/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(12): 5721-5726, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833404

RESUMO

The Drosophila circadian oscillator relies on a negative transcriptional feedback loop, in which the PERIOD (PER) and TIMELESS (TIM) proteins repress the expression of their own gene by inhibiting the activity of the CLOCK (CLK) and CYCLE (CYC) transcription factors. A series of posttranslational modifications contribute to the oscillations of the PER and TIM proteins but few posttranscriptional mechanisms have been described that affect mRNA stability. Here we report that down-regulation of the POP2 deadenylase, a key component of the CCR4-NOT deadenylation complex, alters behavioral rhythms. Down-regulating POP2 specifically increases TIM protein and tim mRNA but not tim pre-mRNA, supporting a posttranscriptional role. Indeed, reduced POP2 levels induce a lengthening of tim mRNA poly(A) tail. Surprisingly, such effects are lost in per0 mutants, supporting a PER-dependent inhibition of tim mRNA deadenylation by POP2. We report a deadenylation mechanism that controls the oscillations of a core clock gene transcript.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas Circadianas Period/fisiologia , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Regulação para Baixo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas Circadianas Period/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Ribonucleases , Transcrição Gênica
3.
Nucleic Acids Res ; 47(5): 2681-2698, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30726994

RESUMO

Most eukaryotic expression systems make use of host-cell nuclear transcriptional and post-transcriptional machineries. Here, we present the first generation of the chimeric cytoplasmic capping-prone phage polymerase (C3P3-G1) expression system developed by biological engineering, which generates capped and polyadenylated transcripts in host-cell cytoplasm by means of two components. First, an artificial single-unit chimeric enzyme made by fusing an mRNA capping enzyme and a DNA-dependent RNA polymerase. Second, specific DNA templates designed to operate with the C3P3-G1 enzyme, which encode for the transcripts and their artificial polyadenylation. This system, which can potentially be adapted to any in cellulo or in vivo eukaryotic expression applications, was optimized for transient expression in mammalian cells. C3P3-G1 shows promising results for protein production in Chinese Hamster Ovary (CHO-K1) cells. This work also provides avenues for enhancing the performances for next generation C3P3 systems.


Assuntos
Núcleo Celular/genética , Citoplasma/genética , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica , Animais , Células CHO , Cricetulus , Citoplasma/química , RNA Polimerases Dirigidas por DNA/química , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Humanos , Poli A/genética , Poliadenilação/genética
4.
Nucleic Acids Res ; 46(17): 8803-8816, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29986060

RESUMO

RsaE is a regulatory RNA highly conserved amongst Firmicutes that lowers the amount of mRNAs associated with the TCA cycle and folate metabolism. A search for new RsaE targets in Staphylococcus aureus revealed that in addition to previously described substrates, RsaE down-regulates several genes associated with arginine catabolism. In particular, RsaE targets the arginase rocF mRNA via direct interactions involving G-rich motifs. Two duplicated C-rich motifs of RsaE can independently downregulate rocF expression. The faster growth rate of ΔrsaE compared to its parental strain in media containing amino acids as sole carbon source points to an underlying role for RsaE in amino acid catabolism. Collectively, the data support a model in which RsaE acts as a global regulator of functions associated with metabolic adaptation.


Assuntos
Arginina/metabolismo , RNA Bacteriano/fisiologia , Sequências Reguladoras de Ácido Ribonucleico , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Sequência Conservada , Meios de Cultura/química , Meios de Cultura/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Organismos Geneticamente Modificados , Sequências Reguladoras de Ácido Ribonucleico/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
5.
PLoS Biol ; 11(8): e1001645, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24013921

RESUMO

Phosphorylation is a pivotal regulatory mechanism for protein stability and activity in circadian clocks regardless of their evolutionary origin. It determines the speed and strength of molecular oscillations by acting on transcriptional activators and their repressors, which form negative feedback loops. In Drosophila, the CK2 kinase phosphorylates and destabilizes the PERIOD (PER) and TIMELESS (TIM) proteins, which inhibit CLOCK (CLK) transcriptional activity. Here we show that CK2 also targets the CLK activator directly. Downregulating the activity of the catalytic α subunit of CK2 induces CLK degradation, even in the absence of PER and TIM. Unexpectedly, the regulatory ß subunit of the CK2 holoenzyme is not required for the regulation of CLK stability. In addition, downregulation of CK2α activity decreases CLK phosphorylation and increases per and tim transcription. These results indicate that CK2 inhibits CLK degradation while reducing its activity. Since the CK1 kinase promotes CLK degradation, we suggest that CLK stability and transcriptional activity result from counteracting effects of CK1 and CK2.


Assuntos
Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Drosophila , Proteínas de Drosophila/genética , Fosforilação
6.
Bioorg Med Chem ; 21(4): 948-56, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23294829

RESUMO

Novel 3'-piperazinyl derivatives of the 8-hydrogeno and 8-methoxy-6-fluoro-1-cyclopropyl-4-quinolone-3-carboxylic acid scaffolds were designed, synthesized and characterized by (1)H, (13)C and (19)F NMR, and HRMS. The activity of these derivatives against pathogenic mycobacteria (M. leprae and M. tuberculosis), wild-type (WT) strains or strains harboring mutations implicated in quinolone resistance, were determined by measuring drug concentrations inhibiting cell growth (MIC) and/or DNA supercoiling by DNA gyrase (IC(50)), or inducing 25% DNA cleavage by DNA gyrase (CC(25)). Compound 4 (with a methoxy in R(8) and a secondary carbamate in R(3)') and compound 5 (with a hydrogen in R(8) and an ethyl ester in R(3)') displayed biological activities close to those of ofloxacin but inferior to those of gatifloxacin and moxifloxacin against M. tuberculosis and M. leprae WT DNA gyrases, whereas all of the compounds were less active in inhibiting M. tuberculosis growth and M. leprae mutant DNA gyrases. Since R(3)' substitutions have been poorly investigated previously, our results may help to design new quinolone derivatives in the future.


Assuntos
Antituberculosos/síntese química , Fluoroquinolonas/química , Mycobacterium leprae/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Antituberculosos/farmacologia , Compostos Aza/química , Compostos Aza/farmacologia , Clivagem do DNA/efeitos dos fármacos , DNA Girase/genética , DNA Girase/metabolismo , Fluoroquinolonas/síntese química , Fluoroquinolonas/farmacologia , Gatifloxacina , Testes de Sensibilidade Microbiana , Moxifloxacina , Mutação , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II
7.
Cardiovasc Res ; 114(2): 247-258, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036603

RESUMO

Aims: Quantitative real-time RT-PCR (RT-qPCR) has become the method of choice for mRNA quantification, but requires an accurate normalization based on the use of reference genes showing invariant expression across various pathological conditions. Only few data exist on appropriate reference genes for the human heart. The objective of this study was to determine a set of suitable reference genes in human atrial and ventricular tissues, from right and left cavities in control and in cardiac diseases. Methods and results: We assessed the expression of 16 reference genes (ACTB, B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC, YWHAZ, 18S) in tissues from: right and left ventricles from healthy controls and heart failure (HF) patients; right-atrial tissue from patients in sinus rhythm with (SRd) or without (SRnd) atrial dilatation, patients with paroxysmal (pAF) or chronic (cAF) atrial fibrillation or with HF; and left-atrial tissue from patients in SR or cAF. Consensual analysis (by geNorm and Normfinder algorithms, BestKeeper software tool and comparative delta-Ct method) of the variability scores obtained for each reference gene expression shows that the most stably expressed genes are: GAPDH, GUSB, IPO8, POLR2A, and YWHAZ when comparing either right and left ventricle or ventricle from healthy controls and HF patients; GAPDH, IPO8, POLR2A, PPIA, and RPLP0 when comparing either right and left atrium or right atria from all pathological groups. ACTB, TBP, TFRC, and 18S genes were identified as the least stable. Conclusions: The overall most stable reference genes across different heart cavities and disease conditions were GAPDH, IPO8, POLR2A and PPIA. YWHAZ or GUSB could be added to this set for some specific experiments. This study should provide useful guidelines for reference gene selection in RT-qPCR studies in human heart.


Assuntos
Fibrilação Atrial/genética , Perfilação da Expressão Gênica/métodos , Genes Essenciais , Átrios do Coração/química , Cardiopatias/genética , Ventrículos do Coração/química , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Proteínas 14-3-3/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , RNA Polimerases Dirigidas por DNA/genética , Europa (Continente) , Feminino , Perfilação da Expressão Gênica/normas , Marcadores Genéticos , Glucuronidase/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Masculino , Pessoa de Meia-Idade , Peptidilprolil Isomerase/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Reprodutibilidade dos Testes , beta Carioferinas/genética
8.
Cell Rep ; 11(8): 1266-79, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25981041

RESUMO

In the Drosophila circadian oscillator, the CLOCK/CYCLE complex activates transcription of period (per) and timeless (tim) in the evening. PER and TIM proteins then repress CLOCK (CLK) activity during the night. The pace of the oscillator depends upon post-translational regulation that affects both positive and negative components of the transcriptional loop. CLK protein is highly phosphorylated and inactive in the morning, whereas hypophosphorylated active forms are present in the evening. How this critical dephosphorylation step is mediated is unclear. We show here that two components of the STRIPAK complex, the CKA regulatory subunit of the PP2A phosphatase and its interacting protein STRIP, promote CLK dephosphorylation during the daytime. In contrast, the WDB regulatory PP2A subunit stabilizes CLK without affecting its phosphorylation state. Inhibition of the PP2A catalytic subunit and CKA downregulation affect daytime CLK similarly, suggesting that STRIPAK complexes are the main PP2A players in producing transcriptionally active hypophosphorylated CLK.


Assuntos
Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Drosophila/metabolismo , Proteínas Circadianas Period/metabolismo , Animais , Feminino , Masculino , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA