Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 34(12): 15687-15700, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047892

RESUMO

Extracellular trafficking of tumor necrosis factor receptor superfamily (TNFRSF) is tightly regulated, disruption of which triggers various autoinflammatory disorders, including TNF receptor-associated periodic syndrome (TRAPS). Here, we provide thus far unraveled molecular basis of noncysteine mutations in TNFR1 ectodomain where loss of an aromatic moiety in cysteine-rich domain (CRD) 2 results in TRAPS disease-associated phenotype. Our study characterized that a missense mutation on phenylalanine residue located in CRD2 (TNFR1F60V ) causes a delay in TNFR1 transport to cell membrane, leading to sustained receptor responsiveness and downstream NF-κB activation, characteristic of clinical manifestation of a prolonged fever. By creating and characterizing identical mutations on structurally conserved ectodomains of osteoprotegerin (OPG) and decoy receptor 3, other two secreted forms of TNFRSF, we further identified that a conserved aromatic residue at the A1 submodule of CRD2 (A1CRD2) confers structural integrity of ectodomain where aromatic sidechain deletion increases thermal instability, interfering with efficient posttranslational modification and subsequent receptor secretion. Interestingly, our functional analyses indicated that this particular noncysteine mutation is not associated with either protein misfolding or loss of function. Finally, by using a synthetic agonist, we demonstrated gain-of-function of the trafficking defect, suggesting the possibility of rescuing affected pathology in related disorders. Given the structural and topological similarities present in the ectodomains of TNFRSF members, our findings provide mechanistic insights of defects in subcellular trafficking of TNF receptors, reported in various TNFRSF-associated diseases.


Assuntos
Transporte Proteico/genética , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais/genética , Proteínas de Transporte/genética , Linhagem Celular , Linhagem Celular Tumoral , Febre/genética , Células HEK293 , Células HeLa , Humanos , Mutação de Sentido Incorreto/genética , NF-kappa B/genética
2.
Lab Invest ; 100(12): 1503-1516, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32572176

RESUMO

Breast cancer (BCa) proliferates within a complex, three-dimensional microenvironment amid heterogeneous biochemical and biophysical cues. Understanding how mechanical forces within the tumor microenvironment (TME) regulate BCa phenotype is of great interest. We demonstrate that mechanical strain enhanced the proliferation and migration of both estrogen receptor+ and triple-negative (TNBC) human and mouse BCa cells. Furthermore, a critical role for exosomes derived from cells subjected to mechanical strain in these pro-tumorigenic effects was identified. Exosome production by TNBC cells increased upon exposure to oscillatory strain (OS), which correlated with elevated cell proliferation. Using a syngeneic, orthotopic mouse model of TNBC, we identified that preconditioning BCa cells with OS significantly increased tumor growth and myeloid-derived suppressor cells (MDSCs) and M2 macrophages in the TME. This pro-tumorigenic myeloid cell enrichment also correlated with a decrease in CD8+ T cells. An increase in PD-L1+ exosome release from BCa cells following OS supported additive T cell inhibitory functions in the TME. The role of exosomes in MDSC and M2 macrophage was confirmed in vivo by cytotracking fluorescent exosomes, derived from labeled 4T1.2 cells, preconditioned with OS. In addition, in vivo internalization and intratumoral localization of tumor-cell derived exosomes was observed within MDSCs, M2 macrophages, and CD45-negative cell populations following direct injection of fluorescently-labeled exosomes. Our data demonstrate that exposure to mechanical strain promotes invasive and pro-tumorigenic phenotypes in BCa cells, indicating that mechanical strain can impact the growth and proliferation of cancer cell, alter exosome production by BCa, and induce immunosuppression in the TME by dampening anti-tumor immunity.


Assuntos
Fenômenos Biomecânicos , Neoplasias da Mama , Estresse Mecânico , Microambiente Tumoral , Animais , Fenômenos Biomecânicos/imunologia , Fenômenos Biomecânicos/fisiologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/fisiopatologia , Carcinogênese , Movimento Celular , Proliferação de Células , Exossomos/metabolismo , Feminino , Humanos , Tolerância Imunológica , Células MCF-7 , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia
3.
J Immunol ; 201(1): 278-295, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29752311

RESUMO

Myeloid-derived suppressor cells (MDSCs) are known suppressors of antitumor immunity, affecting amino acid metabolism and T cell function in the tumor microenvironment. However, it is unknown whether MDSCs regulate B cell responses during tumor progression. Using a syngeneic mouse model of lung cancer, we show reduction in percentages and absolute numbers of B cell subsets including pro-, pre-, and mature B cells in the bone marrow (BM) of tumor-bearing mice. The kinetics of this impaired B cell response correlated with the progressive infiltration of MDSCs. We identified that IL-7 and downstream STAT5 signaling that play a critical role in B cell development and differentiation were also impaired during tumor progression. Global impairment of B cell function was indicated by reduced serum IgG levels. Importantly, we show that anti-Gr-1 Ab-mediated depletion of MDSCs not only rescued serum IgG and IL-7 levels but also reduced TGF-ß1, a known regulator of stromal IL-7, suggesting MDSC-mediated regulation of B cell responses. Furthermore, blockade of IL-7 resulted in reduced phosphorylation of downstream STAT5 and B cell differentiation in tumor-bearing mice and administration of TGF-ß-blocking Ab rescued these IL-7-dependent B cell responses. Adoptive transfer of BM-derived MDSCs from tumor-bearing mice into congenic recipients resulted in significant reductions of B cell subsets in the BM and in circulation. MDSCs also suppressed B cell proliferation in vitro in an arginase-dependent manner that required cell-to-cell contact. Our results indicate that tumor-infiltrating MDSCs may suppress humoral immune responses and promote tumor escape from immune surveillance.


Assuntos
Linfócitos B/imunologia , Interleucina-7/imunologia , Neoplasias Pulmonares/imunologia , Células Supressoras Mieloides/imunologia , Fator de Transcrição STAT5/imunologia , Evasão Tumoral/imunologia , Transferência Adotiva , Animais , Linfócitos B/citologia , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Feminino , Imunoglobulina G/sangue , Interleucina-7/sangue , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/transplante , Fosforilação , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/sangue , Microambiente Tumoral/imunologia
4.
Lab Invest ; 99(1): 93-106, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30353130

RESUMO

The lack of consensus on bone marrow (BM) and splenic immune cell profiles in preclinical mouse strains complicates comparative analysis across different studies. Although studies have documented relative distribution of immune cells from peripheral blood in mice, similar studies for BM and spleen from naïve mice are lacking. In an effort to establish strain- and gender-specific benchmarks for distribution of various immune cell subtypes in these organs, we performed immunophenotypic analysis of BM cells and splenocytes from both genders of three commonly used murine strains (C57BL/6NCr, 129/SvHsd, and BALB/cAnNCr). Total neutrophils and splenic macrophages were significantly higher in C57BL/6NCr, whereas total B cells were lower. Within C57BL/6NCr female mice, BM B cells were elevated with respect to the males whereas splenic mDCs and splenic neutrophils were reduced. Within BALB/cAnNCr male mice, BM CD4+ Tregs were elevated with respect to the other strains. Furthermore, in male BALB/cAnNCr mice, NK cells were elevated with respect to the other strains in both BM and spleen. Splenic CD4+ Tregs and splenic CD8+ T cells were reduced in male BALB/c mice in comparison to female mice. Bone marrow CD4+ T cells and mDCs were significantly increased in 129/SvHsd whereas splenic CD8+ T cells were reduced. In general, males exhibited higher immature myeloid cells, macrophages, and NK cells. To our knowledge, this study provides a first attempt to systematically establish organ-specific benchmarks on immune cells in studies involving these mouse strains.


Assuntos
Camundongos Endogâmicos/imunologia , Animais , Contagem de Linfócito CD4 , Feminino , Masculino , Caracteres Sexuais , Especificidade da Espécie , Baço/imunologia
5.
FASEB J ; 31(4): 1608-1619, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28069826

RESUMO

Androgen-deprivation therapy has been identified to induce oxidative stress in prostate cancer (PCa), leading to reactivation of androgen receptor (AR) signaling in a hormone-refractory manner. Thus, antioxidant therapies have gained attention as adjuvants for castration-resistant PCa. Here, we report for the first time that human endostatin (ES) prevents androgen-independent growth phenotype in PCa cells through its molecular targeting of AR and glucocorticoid receptor (GR) and downstream pro-oxidant signaling. This reversal after ES treatment significantly decreased PCa cell proliferation through down-regulation of GR and up-regulation of manganese superoxide dismutase and reduced glutathione levels. Proteome and biochemical analyses of ES-treated PCa cells further indicated a significant up-regulation of enzymes in the major reactive oxygen species (ROS) scavenging machinery, including catalase, glutathione synthetase, glutathione reductase, NADPH-cytochrome P450 reductase, biliverdin reductase, and thioredoxin reductase, resulting in a concomitant reduction of intracellular ROS. ES further augmented the antioxidant system through up-regulation of glucose influx, the pentose phosphate pathway, and NAD salvaging pathways. This shift in cancer cell redox homeostasis by ES significantly decreased the effect of protumorigenic oxidative machinery on androgen-independent PCa growth, suggesting that ES can suppress GR-induced resistant phenotype upon AR antagonism and that the dual targeting action of ES on AR and GR can be further translated to PCa therapy.-Lee, J. H., Kang, M., Wang, H., Naik, G., Mobley, J. A., Sonpavde, G., Garvey, W. T., Darley-Usmar, V. M., Ponnazhagan, S. Endostatin inhibits androgen-independent prostate cancer growth by suppressing nuclear receptor-mediated oxidative stress.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Endostatinas/farmacologia , Estresse Oxidativo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Catalase/genética , Catalase/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Humanos , Masculino , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Receptores de Glucocorticoides/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(5): 1392-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605930

RESUMO

Acquired resistance to androgen receptor (AR)-targeted therapies compels the development of novel treatment strategies for castration-resistant prostate cancer (CRPC). Here, we report a profound effect of endostatin on prostate cancer cells by efficient intracellular trafficking, direct interaction with AR, reduction of nuclear AR level, and down-regulation of AR-target gene transcription. Structural modeling followed by functional analyses further revealed that phenylalanine-rich α1-helix in endostatin-which shares structural similarity with noncanonical nuclear receptor box in AR-antagonizes AR transcriptional activity by occupying the activation function (AF)-2 binding interface for coactivators and N-terminal AR AF-1. Together, our data suggest that endostatin can be recognized as an endogenous AR inhibitor that impairs receptor function through protein-protein interaction. These findings provide new insights into endostatin whose antitumor effect is not limited to inhibiting angiogenesis, but can be translated to suppressing AR-mediated disease progression in CRPC.


Assuntos
Antagonistas de Androgênios/metabolismo , Endostatinas/farmacologia , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Sítios de Ligação , Núcleo Celular/metabolismo , Humanos , Masculino
7.
Prostate ; 76(7): 624-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26856684

RESUMO

BACKGROUND: A growing body of evidence indicates a positive correlation between expression of human antimicrobial peptide leucin leucin 37 (LL-37) and progression of epithelial cancers, including prostate cancer (PCa). Although the molecular mechanisms for this correlation has not yet been elucidated, the primary function of LL-37 as a chemotactic molecule for innate immune effector cells suggests its possible association in coordinating protumorigenic mechanisms, mediated by tumor-infiltrating immune cells. METHODS: To investigate protumorigenic role(s) of cathelicidin-related antimicrobial peptide (CRAMP), a murine orthologue of LL-37, the present study compared tumor growth kinetics between mouse PCa cell lines with and without CRAMP expression (TRAMP-C1 and TRAMP-C1(CRAMP-sh) , respectively) in immunocompetent mice. CRAMP-mediated chemotaxis of different innate immune cell types to the tumor microenvironment (TME) was observed in vivo and confirmed by in vitro chemotaxis assay. The role of CRAMP in differentiation and polarization of immature myeloid progenitors (IMPs) to protumorigenic type 2 macrophages (M2) in TME was determined by adoptive transfer of IMPs into mice bearing CRAMP(+) and CRAMP(-) tumors. To differentiate protumorigenic events mediated by tumor-derived CRAMP from host immune cell-derived CRAMP, tumor challenge study was performed in CRAMP-deficient mice. To identify mechanisms of CRAMP function, macrophage colony stimulating factor (M-CSF) and monocyte chemoattractant protein 1 (MCP-1) gene expression was analyzed by QRT-PCR and STAT3 signaling was determined by immunoblotting. RESULTS: Significantly delayed tumor growth was observed in wild-type (WT) mice implanted with TRAMP-C1(CRAMP-sh) cells compared to mice implanted with TRAMP-C1 cells. CRAMP(+) TME induced increased number of IMP differentiation into protumorigenic M2 macrophages compared to CRAMP(-) TME, indicating tumor-derived CRAMP facilitates differentiation and polarization of IMPs toward M2. Tumor challenge study in CRAMP deficient mice showed comparable tumor growth kinetics with WT mice, suggesting tumor-derived CRAMP plays a crucial role in PCa progression. In vitro study demonstrated that overexpressed M-CSF and MCP-1 in TRAMP-C1 cells through CRAMP-mediated autocrine signaling, involving p65, regulates IMP-to-M2 differentiation/polarization through STAT3 activation. CONCLUSION: Altogether, the present study suggests that overexpressed CRAMP in prostate tumor initially chemoattracts IMPs to TME and mediates differentiation and polarization of early myeloid progenitors into protumorigenic M2 macrophages during PCa progression. Thus, selective downregulation of CRAMP in tumor cells in situ may benefit overcoming immunosuppressive mechanisms in PCa.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Diferenciação Celular/genética , Polaridade Celular/genética , Quimiotaxia/genética , Macrófagos/metabolismo , Células Progenitoras Mieloides/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Células Progenitoras Mieloides/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Microambiente Tumoral , Catelicidinas
8.
J Immunol ; 189(9): 4258-65, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23018462

RESUMO

Elevated levels of plasmacytoid dendritic cells (pDC) have been reported in breast cancer patients, but the significance remains undefined. Using three immunocompetent mouse models of breast cancer bone metastasis, we identified a key role for pDC in facilitating tumor growth through immunosuppression and aggressive osteolysis. Following infiltration of macrophages upon breast cancer dissemination, there was a steady increase in pDC within the bone, which resulted in a sustained Th2 response along with elevated levels of regulatory T cells and myeloid-derived suppressor cells. Subsequently, pDC and CD4(+) T cells, producing osteolytic cytokines, increased with tumor burden, causing severe bone damage. Microcomputed tomography and histology analyses of bone showed destruction of femur and tibia. The therapeutic significance of this finding was confirmed by depletion of pDC, which resulted in decreased tumor burden and bone loss by activating tumor-specific cytolytic CD8(+) T cells and decreasing suppressor cell populations. Thus, pDC depletion may offer a novel adjuvant strategy to therapeutically influence breast cancer bone metastasis.


Assuntos
Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Inibidores do Crescimento/administração & dosagem , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/secundário , Morte Celular/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Dendríticas/citologia , Progressão da Doença , Feminino , Inibidores do Crescimento/uso terapêutico , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Neoplasias Mamárias Experimentais/prevenção & controle , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Osteólise/imunologia , Análise de Sobrevida
9.
J Biol Chem ; 287(15): 12241-9, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22351751

RESUMO

Noggin is a glycosylated-secreted protein known so far for its inhibitory effects on bone morphogenetic protein (BMP) signaling by sequestering the BMP ligand. We report here for the first time a novel mechanism by which noggin directly induces adipogenesis of mesenchymal stem cells independently of major human adipogenic signals through C/EBPδ, C/EBPα and peroxisome proliferator-activated receptor-γ. Evaluation of a possible mechanism for noggin-induced adipogenesis of mesenchymal stem cells identified the role of Pax-1 in mediating such differentiation. The relevance of elevated noggin levels in obesity was confirmed in a preclinical, immunocompetent mouse model of spontaneous obesity and in human patients with higher body mass index. These data clearly provide a novel role for noggin in inducing adipogenesis and possibly obesity and further indicates the potential of noggin as a therapeutic target to control obesity.


Assuntos
Adipogenia , Proteínas de Transporte/fisiologia , Células-Tronco Mesenquimais/fisiologia , Obesidade/patologia , Adiposidade , Adulto , Animais , Densidade Óssea , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Transporte/sangue , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Adulto Jovem
10.
ACS Synth Biol ; 12(1): 17-26, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36627108

RESUMO

Gene therapy has demonstrated enormous potential for changing how we combat disease. By directly engineering the genetic composition of cells, it provides a broad range of options for improving human health. Adeno-associated viruses (AAVs) represent a leading gene therapy vector and are expected to address a wide range of conditions in the coming decade. Three AAV therapies have already been approved by the FDA to treat Leber's congenital amaurosis, spinal muscular atrophy, and hemophilia B. Yet these therapies cost around $850,000, $2,100,000, and $3,500,000, respectively. Such prices limit the broad applicability of AAV gene therapy and make it inaccessible to most patients. Much of this problem arises from the high manufacturing costs of AAVs. At the same time, the field of synthetic biology has grown rapidly and has displayed a special aptitude for addressing biomanufacturing problems. Here, we discuss emerging efforts to apply synthetic biology design to decrease the price of AAV production, and we propose that such efforts could play a major role in making gene therapy much more widely accessible.


Assuntos
Dependovirus , Biologia Sintética , Humanos , Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética
11.
Cancer Immunol Immunother ; 61(9): 1441-50, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22310929

RESUMO

BACKGROUND: Low doses of the demethylating agent decitabine have been shown to enhance the sensitivity of tumors to immune effector cells and molecules through upregulation of tumor antigen presentation and apoptotic pathways. Effects on host immune effector and suppressor responses have not been well characterized. METHODS: Mice bearing B16 melanoma were treated with low-dose decitabine, cytokine, interleukin-2 (IL-2), toll-like receptor 9 agonist ODN1826, and/or a viral vectored vaccine targeting the melanoma antigen Trp2. Lymphoid and myeloid effector and suppressor cells were examined both systemically and intratumorally with functional, flow cytometric, and polymerase chain reaction-based assays. RESULTS: Enhancement of tumor growth delay was observed when decitabine was applied sequentially but not concurrently with IL-2. In contrast, complete responses and prolonged survival were observed when decitabine was applied with ODN1826 as therapy and with ODN1826 as a Trp2 vaccine adjuvant. Decitabine decreased natural killer and antigen-specific cellular immune responses when administered concurrently with IL-2 and with ODN1826; the Th1-associated transcription factor Tbet also decreased. T regulatory cells were not affected. When applied concurrently with ODN1826, decitabine increased macrophage cytotoxicity, M1 polarization, and dendritic cell activation. Myeloid-derived suppressor cells were reduced. CONCLUSION: Low-dose decitabine promotes both anti- and pro-tumor host immune responses to immunotherapeutics in melanoma-bearing mice. Macrophage effector and dendritic cell activation increase, and myeloid suppressor cells decrease. Lymphoid effector responses, however, can be inhibited.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Azacitidina/análogos & derivados , Imunoterapia/métodos , Interleucina-2/farmacologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Oligodesoxirribonucleotídeos/farmacologia , Animais , Azacitidina/administração & dosagem , Linhagem Celular Tumoral , Terapia Combinada , Citocinas/biossíntese , Citocinas/imunologia , Decitabina , Relação Dose-Resposta a Droga , Feminino , Humanos , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/imunologia
12.
Mol Cancer Ther ; 21(11): 1710-1721, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36031328

RESUMO

Immune checkpoint inhibitors (ICI) are promising in adjuvant settings for solid tumors and hematologic malignancies. They are currently used in the treatment as mAbs in high concentrations, raising concerns of toxicity and adverse side effects. Among various checkpoint molecules, targeting the programmed cell death protein-1 (PD-1)-programmed death-ligand 1 (PD-L1) axis has garnered more clinical utility than others have. To develop a physiologically relevant and systemically stable level of ICIs from a one-time application by genetic antibody engineering, we endeavored using a nonpathogenic, replication-deficient recombinant adeno-associated vector (rAAV) expressing single-chain variable fragments (scFv) of PD-L1 antibody and tested in syngeneic mouse therapy models of MC38 colorectal and EMT6 breast tumors. Results of this study indicated a significant protection against PD-L1-mediated inhibition of CD8+ T-cell function, against the growth of primary and secondary tumors, and durable antitumor CTLs activity by adoptive CD8+ T-cell transfer. Stable maintenance of PD-L1 scFv in vivo resulted in an increase in PD-1- CD8+ T cells and a concomitant decrease in regulatory T cells, M2 macrophages, and myeloid-derived suppressor cells in the tumor microenvironment. Overall, these data demonstrate the potential of rAAV-PD-L1-scFv as an alternative to mAb targeting of PD-L1 for tumor therapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Imunoterapia/métodos , Neoplasias/patologia , Anticorpos Monoclonais/farmacologia , Microambiente Tumoral
13.
Prostate ; 71(6): 659-70, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20957672

RESUMO

BACKGROUND: The antimicrobial peptide, leucine-leucine-37 (LL-37), stimulates proliferation, angiogenesis, and cellular migration, inhibits apoptosis and is associated with inflammation. Since these functional processes are often exaggerated in cancer, the aim of the present study was to investigate the expression and role of LL-37 in prostate cancer (PCa) and establish its value as a therapeutic target. METHODS: We evaluated the expression of LL-37 and the murine orthologue, cathelicidin-related antimicrobial peptide (CRAMP) in human and murine prostate tumors, respectively. Compared to normal/benign prostate tissue, both LL-37 and CRAMP were increasingly over-expressed with advancing grades of primary PCa and its metastasis in human tissues and in the transgenic adenocarcinoma mouse prostate (TRAMP) model, correspondingly. We subsequently knocked-down CRAMP in the highly tumorigenic TRAMP-C1 cell line via a RNA interference strategy to examine the importance of CRAMP on cellular proliferation, angiogenesis, invasion, apoptosis, activation of signaling pathways and tumor kinetics. RESULTS: Abrogation of CRAMP expression led to decreased proliferation, invasion, type IV collagenase, and the amount of phosphorylated Erk1/2 and Akt signaling in vitro. These results were paralleled in vivo. Syngenic implantation of TRAMP-C1 cells subjected to CRAMP knock-down resulted in a decreased tumor incidence and size, and the down-regulation of pro-tumorigenic mechanisms. CONCLUSIONS: CRAMP knock-down in a murine PCa model analogously demonstrated the tumorigenic contributions of LL-37 in PCa and its potential as a novel therapeutic target for the treatment of PCa and potentially, other cancers over-expressing the peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Catelicidinas/biossíntese , Catelicidinas/deficiência , Catelicidinas/genética , Catelicidinas/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , RNA Neoplásico/química , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Mol Ther ; 18(5): 1026-34, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20068549

RESUMO

The potential of mesenchymal stem cells (MSC) in tissue regeneration is increasingly gaining attention. There is now accumulating evidence that MSC make an important contribution to postnatal vasculogenesis. During bone development and fracture healing, vascularization is observed before bone formation. The present study determined the potential of MSC, transduced ex vivo with a recombinant adeno-associated virus 6 (rAAV6) encoding bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF) in a mouse model of segmental bone defect created in the tibiae of athymic nude mice. Mouse MSC that were mock-transduced or transduced with rAAV6-BMP2:VEGF were systemically transplanted following radiographic confirmation of the osteotomy. Effects of the therapy were determined by enzyme-linked immunosorbent assay measurements for BMP2 and VEGF, dual-energy X-ray absorptiometry (DXA) for bone density, three-dimensional microcomputed tomography (microCT) for bone and capillary architecture, and histomorphometry for bone remodeling. Results of these analyses indicated enhanced bone formation in the group that received BMP2+VEGF-expressing MSC compared to other groups. The therapeutic effects were accompanied by increased vascularity and osteoblastogenesis, indicating its potential for effective use while treating difficult nonunion bone defects in humans.


Assuntos
Indutores da Angiogênese/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Absorciometria de Fóton , Animais , Fenômenos Biomecânicos , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Células Cultivadas , Dependovirus/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Nus , Fator C de Crescimento do Endotélio Vascular/metabolismo
15.
Front Med (Lausanne) ; 8: 643793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928104

RESUMO

Cellular exosome-mediated crosstalk in tumor microenvironment (TME) is a critical component of anti-tumor immune responses. In addition to particle size, exosome transport and uptake by target cells is influenced by physical and physiological factors, including interstitial fluid pressure, and exosome concentration. These variables differ under both normal and pathological conditions, including cancer. The transport of exosomes in TME is governed by interstitial flow and diffusion. Based on these determinants, mathematical models were adapted to simulate the transport of exosomes in the TME with specified exosome release rates from the tumor cells. In this study, the significance of spatial relationship in exosome-mediated intercellular communication was established by treating their movement in the TME as a continuum using a transport equation, with advection due to interstitial flow and diffusion due to concentration gradients. To quantify the rate of release of exosomes by biomechanical forces acting on the tumor cells, we used a transwell platform with confluent triple negative breast cancer cells 4T1.2 seeded in BioFlex plates exposed to an oscillatory force. Exosome release rates were quantified from 4T1.2 cells seeded at the bottom of the well following the application of either no force or an oscillatory force, and these rates were used to model exosome transport in the transwell. The simulations predicted that a larger number of exosomes reached the membrane of the transwell for 4T1.2 cells exposed to the oscillatory force when compared to controls. Additionally, we simulated the interstitial fluid flow and exosome transport in a 2-dimensional TME with macrophages, T cells, and mixtures of these two populations at two different stages of a tumor growth. Computational simulations were carried out using the commercial computational simulation package, ANSYS/Fluent. The results of this study indicated higher exosome concentrations and larger interstitial fluid pressure at the later stages of the tumor growth. Quantifying the release of exosomes by cancer cells, their transport through the TME, and their concentration in TME will afford a deeper understanding of the mechanisms of these interactions and aid in deriving predictive models for therapeutic intervention.

16.
Front Immunol ; 12: 747780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867973

RESUMO

Regulatory B cells (Breg) are IL-10 producing subsets of B cells that contribute to immunosuppression in the tumor microenvironment (TME). Breg are elevated in patients with lung cancer; however, the mechanisms underlying Breg development and their function in lung cancer have not been adequately elucidated. Herein, we report a novel role for Indoleamine 2, 3- dioxygenase (IDO), a metabolic enzyme that degrades tryptophan (Trp) and the Trp metabolite L-kynurenine (L-Kyn) in the regulation of Breg differentiation in the lung TME. Using a syngeneic mouse model of lung cancer, we report that Breg frequencies significantly increased during tumor progression in the lung TME and secondary lymphoid organs, while Breg were reduced in tumor-bearing IDO deficient mice (IDO-/-). Trp metabolite L-Kyn promoted Breg differentiation in-vitro in an aryl hydrocarbon receptor (AhR), toll-like receptor-4-myeloid differentiation primary response 88, (TLR4-MyD88) dependent manner. Importantly, using mouse models with conditional deletion of IDO in myeloid-lineage cells, we identified a significant role for immunosuppressive myeloid-derived suppressor cell (MDSC)-associated IDO in modulating in-vivo and ex-vivo differentiation of Breg. Our studies thus identify Trp metabolism as a therapeutic target to modulate regulatory B cell function during lung cancer progression.


Assuntos
Linfócitos B Reguladores/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Diferenciação Celular/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Microambiente Tumoral/imunologia , Animais , Carcinoma Pulmonar de Lewis/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo
17.
Front Oncol ; 11: 654922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968758

RESUMO

Tumor-stromal interactions within the tumor microenvironment (TME) influence lung cancer progression and response to therapeutic interventions, yet traditional in vitro studies fail to replicate the complexity of these interactions. Herein, we developed three-dimensional (3D) lung tumor models that mimic the human TME and demonstrate tumor-stromal crosstalk mediated by extracellular vesicles (EVs). EVs released by tumor cells, independent of p53 status, and fibroblasts within the TME mediate immunomodulatory effects; specifically, monocyte/macrophage polarization to a tumor-promoting M2 phenotype within this 3D-TME. Additionally, immune checkpoint inhibition in a 3D model that included T cells showed an inhibition of tumor growth and reduced hypoxia within the TME. Thus, perfused 3D tumor models incorporating diverse cell types provide novel insights into EV-mediated tumor-immune interactions and immune-modulation for existing and emerging cancer therapies.

18.
Cancer Res ; 81(21): 5425-5437, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289986

RESUMO

Elevated infiltration of immunosuppressive alternatively polarized (M2) macrophages is associated with poor prognosis in patients with cancer. The tumor microenvironment remarkably orchestrates molecular mechanisms that program these macrophages. Here we identify a novel role for oncogenic Hedgehog (Hh) signaling in programming signature metabolic circuitries that regulate alternative polarization of tumor-associated macrophages. Two immunocompetent orthotopic mouse models of mammary tumors were used to test the effect of inhibiting Hh signaling on tumor-associated macrophages. Treatment with the pharmacologic Hh inhibitor vismodegib induced a significant shift in the profile of tumor-infiltrating macrophages. Mass spectrometry-based metabolomic analysis showed Hh inhibition induced significant alterations in metabolic processes, including metabolic sensing, mitochondrial adaptations, and lipid metabolism. In particular, inhibition of Hh in M2 macrophages reduced flux through the UDP-GlcNAc biosynthesis pathway. Consequently, O-GlcNAc-modification of STAT6 decreased, mitigating the immune-suppressive program of M2 macrophages, and the metabolically demanding M2 macrophages shifted their metabolism and bioenergetics from fatty acid oxidation to glycolysis. M2 macrophages enriched from vismodegib-treated mammary tumors showed characteristically decreased O-GlcNAcylation and altered mitochondrial dynamics. These Hh-inhibited macrophages are reminiscent of inflammatory (M1) macrophages, phenotypically characterized by fragmented mitochondria. This is the first report highlighting the relevance of Hh signaling in controlling a complex metabolic network in immune cells. These data describe a novel immunometabolic function of Hh signaling that can be clinically exploited. SIGNIFICANCE: These findings illustrate that Hh activity regulates a metabolic and bioenergetic regulatory program in tumor-associated macrophages that promotes their immune-suppressive polarization.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Proteínas Hedgehog/metabolismo , Metaboloma , Mitocôndrias/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Proliferação de Células , Metabolismo Energético , Feminino , Glicólise , Proteínas Hedgehog/genética , Humanos , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA-Seq , Transcriptoma , Células Tumorais Cultivadas , Macrófagos Associados a Tumor/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Cell Biochem ; 111(2): 249-57, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20506559

RESUMO

Mesenchymal stem cells (MSCs) are the most popular among the adult stem cells in tissue engineering and regenerative medicine. Since their discovery and functional characterization in the late 1960s and early 1970s, MSCs or MSC-like cells have been obtained from various mesodermal and non-mesodermal tissues, although majority of the therapeutic applications involved bone marrow-derived MSCs. Based on its mesenchymal origin, it was predicted earlier that MSCs only can differentiate into mesengenic lineages like bone, cartilage, fat or muscle. However, varied isolation and cell culturing methods identified subsets of MSCs in the bone marrow which not only differentiated into mesenchymal lineages, but also into ectodermal and endodermal derivatives. Although, true pluripotent status is yet to be established, MSCs have been successfully used in bone and cartilage regeneration in osteoporotic fracture and arthritis, respectively, and in the repair of cardiac tissue following myocardial infarction. Immunosuppressive properties of MSCs extend utility of MSCs to reduce complications of graft versus host disease and rheumatoid arthritis. Homing of MSCs to sites of tissue injury, including tumor, is well established. In addition to their ability in tissue regeneration, MSCs can be genetically engineered ex vivo for delivery of therapeutic molecule(s) to the sites of injury or tumorigenesis as cell therapy vehicles. MSCs tend to lose surface receptors for trafficking and have been reported to develop sarcoma in long-term culture. In this article, we reviewed the current status of MSCs with special emphasis to therapeutic application in bone-related diseases.


Assuntos
Doenças Ósseas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células da Medula Óssea , Humanos , Medicina Regenerativa/métodos , Adulto Jovem
20.
Gastroenterology ; 136(3): 1070-80, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19109954

RESUMO

BACKGROUND & AIMS: Hepatopulmonary syndrome (HPS), defined as intrapulmonary vasodilation, occurs in 10%-30% of cirrhotics and increases mortality. In a rat model of HPS induced by common bile duct ligation (CBDL), but not thioacetamide (TAA)-induced nonbiliary cirrhosis, lung capillary density increases, monocytes accumulate in the microvasculature, and signaling factors in the angiogenesis pathway (Akt and endothelial nitric oxide synthase [eNOS]) are activated. Pentoxifylline (PTX) directly decreases lung endothelial Akt and eNOS activation, blocks intravascular monocyte accumulation, and improves experimental HPS; we evaluated whether pulmonary angiogenesis develops in this model. METHODS: TAA- and PTX-treated animals were evaluated following CBDL. Lung angiogenesis was assessed by quantifying factor VIII-positive microvessels and levels of von Willebrand factor (vWf), vascular endothelial cadherin (VE-cadherin), and proliferating cell nuclear antigen (PCNA). Angiogenic factors including phospho-Akt, phospho-eNOS, vascular endothelial growth factor (VEGF)-A, and phospho-VEGF receptor-2 (p-VEGFR-2) were compared and monocyte accumulation was assessed. RESULTS: Following CBDL, but not TAA exposure, rats developed HPS that was temporally correlated with increased numbers of lung microvessel; increased levels of vWf, VE-cadherin and PCNA; and activation of Akt and eNOS. Angiogenesis was accompanied by increased pulmonary VEGF-A and p-VEGFR-2 levels, with VEGF-A staining in accumulated intravascular monocytes and alveolar endothelial cells. Following CBDL, PTX-treated rats had reduced numbers of microvessels, reduced lung monocyte accumulation, downregulation of pulmonary angiogenic factors, and reduced symptoms of HPS. CONCLUSIONS: A specific increase in pulmonary angiogenesis occurs as experimental HPS develops, accompanied by activation of VEGF-A-associated angiogenic pathways. PTX decreases the angiogenesis, reduces the symptoms of HPS, and downregulates VEGF-A mediated pathways.


Assuntos
Síndrome Hepatopulmonar/fisiopatologia , Neovascularização Patológica/fisiopatologia , Circulação Pulmonar/fisiologia , Angiostatinas/farmacologia , Animais , Ducto Colédoco , Modelos Animais de Doenças , Endostatinas/farmacologia , Síndrome Hepatopulmonar/induzido quimicamente , Síndrome Hepatopulmonar/tratamento farmacológico , Ligadura , Masculino , Microcirculação/fisiologia , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Pentoxifilina/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Tioacetamida/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA