Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Fish Physiol Biochem ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658493

RESUMO

Thermal variations due to global climate change are expected to modify the distributions of marine ectotherms, with potential pathogen translocations. This is of particular concern at high latitudes where cold-adapted stenothermal fish such as the Notothenioids occur. However, little is known about the combined effects of thermal fluctuations and immune challenges on the balance between cell damage and repair processes in these fish. The aim of this study was to determine the effect of thermal variation on specific genes involved in the ubiquitination and apoptosis pathways in two congeneric Notothenioid species, subjected to simulated bacterial and viral infections. Adult fish of Harpagifer bispinis and Harpagifer antarcticus were collected from Punta Arenas (Chile) and King George Island (Antarctica), respectively, and distributed as follows: injected with PBS (control), LPS (2.5 mg/kg) or Poly I:C (2 mg/kg) and then submitted to 2, 5 and 8 °C. After 1 week, samples of gills, liver and spleen were taken to evaluate the expression by real-time PCR of specific genes involved in ubiquitination (E3-ligase enzyme) and apoptosis (BAX and SMAC/DIABLO). Gene expression was tissue-dependent and increased with increasing temperature in the gills and liver while showing an opposite pattern in the spleen. Studying a pair of sister species that occur across the Antarctic Polar Front can help us understand the particular pressures of intertidal lifestyles and the effect of temperature in combination with biological stressors on cell damage and repair capacity in a changing environment.

2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834004

RESUMO

The NLRP3, one of the most heavily studied inflammasome-related proteins in mammals, remains inadequately characterized in Atlantic salmon (Salmo salar), despite the significant commercial importance of this salmonid. The NLRP3 inflammasome is composed of the NLRP3 protein, which is associated with procaspase-1 via an adapter molecule known as ASC. This work aims to characterize the Salmo salar NLRP3 inflammasome through in silico structural modeling, functional transcript expression determination in the SHK-1 cell line in vitro, and a transcriptome analysis on Atlantic salmon. The molecular docking results suggested a similar arrangement of the ternary complex between NLRP3, ASC, and caspase-1 in both the Atlantic salmon and the mammalian NLRP3 inflammasomes. Moreover, the expression results confirmed the functionality of the SsNLRP3 inflammasome in the SHK-1 cells, as evidenced by the lipopolysaccharide-induced increase in the transcription of genes involved in inflammasome activation, including ASC and NLRP3. Additionally, the transcriptome results revealed that most of the inflammasome-related genes, including ASC, NLRP3, and caspase-1, were down-regulated in the Atlantic salmon following its adaptation to seawater (also known as parr-smolt transformation). This is correlated with a temporary detrimental effected on the immune system. Collectively, these findings offer novel insights into the evolutionarily conserved role of NLRP3.


Assuntos
Inflamassomos , Salmo salar , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Simulação de Acoplamento Molecular , Perfilação da Expressão Gênica , Caspases/metabolismo , Transcriptoma , Mamíferos/metabolismo
3.
Fish Shellfish Immunol ; 130: 391-408, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126838

RESUMO

Rising ocean temperatures due to climate change combined with the intensification of anthropogenic activity can drive shifts in the geographic distribution of species, with the risks of introducing new diseases. In a changing environment, new host-pathogen interactions or changes to existing dynamics represent a major challenge for native species at high latitudes. Notothenioid fish constitute a unique study system since members of this group are found inside and outside Antarctica, are highly adapted to cold and particularly sensitive to temperature increments. However, data about their immune response remains scarce. Here, we aimed to evaluate the innate immune response under thermal stress in two species of Notothenioid fish, Harpagifer antarcticus and Harpagifer bispinis. Adult individuals from both species were collected on King George Island (Antarctica), and Punta Arenas (Chile), respectively. Specimens were assigned to a control group or injected with one of two agents (LPS and Poly I:C) to simulate either a bacterial or viral infection, and subjected to three different temperatures 2, 5 and 8 °C for 1 week. In parallel, we established leukocytes primary cell cultures from head kidney, which were also subjected to the immunostimulants at the same three temperatures, and incubated for 0.5, 1, 3, 6, 12, 24, and 48 h. We evaluated the relative gene expression of genes involved in the innate immune response (TLR1, TLR3, NF-kB, MYD88, IFNGR e IL-8) through real time qPCR. We found differences between species mainly in vivo, where H. antarcticus exhibited upregulation at high temperatures and H. bispinis seemed to have reached their physiological minimum at 2 °C. Although temperature had a strong effect during the in vivo assay for both species, it was negligible for primary cell cultures, which responded primarily to condition and time. Moreover, while leukocytes responded with fluctuations across time points, in vivo both species manifested strong and clear patterns of gene expression. These results highlight the importance of evaluating the effect of multiple stressors and set a precedent for future research.


Assuntos
Lipopolissacarídeos , Perciformes , Adjuvantes Imunológicos/metabolismo , Animais , Regiões Antárticas , Peixes/metabolismo , Imunidade Inata , Interleucina-8 , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Perciformes/genética , Poli I-C/farmacologia , Temperatura , Receptor 1 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32927078

RESUMO

Francisella noatunensis subsp. noatunensis is the responsible agent of Francisellosis, a bacterial disease that affects an important amount of aquatic farmed species. Eleginops maclovinus is a fish that cohabits with salmonids cages in Chile and can also act as a vector of this bacterial disease. In the present study, we evaluated calcium metabolism in the liver of E. maclovinus injected intraperitoneally with different doses of F. noatunensis subsp. noatunensis (low 1.5 × 101, medium 1.5 × 105 and high doses 1.5 × 1010 cells/µL). Fish were sampled at 1, 3, 7, 14, 21 and 28 days post injection (dpi). No mortalities nor clinical signs were observed. Plasma calcium levels were higher in the high doses group of F. noatunensis subsp. noatunensis at day 7 and 14 compared to the control group (fish injected with bacterial medium alone). Hypercalcemic factors increased at day 14 and 21 for the medium and low dose (parathyroid hormone-related protein precursor), while vitamin D3 receptor increased its expression at times 1, 3 and 7 for the low dose. On the other hand, hypocalcemic factors such as calcitonin receptor and stanniocalcin increased its expression at time 7 and 14, respectively. Calmodulin involved in calcium storage decreased its expression during all experimental days in fish subjected to high bacterial dose. Proteins involved in calcium transport, such as L-type voltage-gated calcium channel and trpv5 increased their transcription at day 1 and 14, compared to calcium sensing-receptor and plasma membrane Ca2 +- ATPase that showed peak expression at times 14 and 28. The results suggest a clear alteration of calcium metabolism, mainly in high bacterial doses. This study provides new knowledge about the calcium metabolism in fish infected with bacteria.


Assuntos
Cálcio/metabolismo , Francisella/metabolismo , Perciformes/genética , Animais , Cálcio/sangue , Calmodulina/metabolismo , Citosol/metabolismo , Fígado/metabolismo , Perciformes/metabolismo
5.
Fish Shellfish Immunol ; 58: 259-265, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27640334

RESUMO

The NOD-like receptors (NLRs) were recently identified as an intracellular pathogen recognition receptor family in vertebrates. While the immune system participation of NLRs has been characterized and analyzed in various mammalian models, few studies have considered NLRs in teleost species. Therefore, this study analyzed the Atlantic salmon (Salmo salar) NLRC5. Structurally, Atlantic salmon NLRC5 presented leucine-rich repeat subfamily genes. Phylogenetically, NLRC5 was moderately conserved between S. salar and other species. Real-time quantitative PCR revealed NLRC5 expression in almost all analyzed organs, with greatest expressions in the head kidney, spleen, and hindgut. Furthermore, NLRC5 gene expression decreased during smolt stage. These data suggest that NLRC5 participates in the Atlantic salmon immune response and is regulated, at least partly, by the smoltification process, suggesting that there is a depression of immune system from parr at smolt stage. This is the first report on the NLRC5 gene in salmonid smolts.


Assuntos
Proteínas de Peixes/genética , Regulação da Expressão Gênica , Expressão Gênica , Inflamassomos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Salmo salar/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Imunidade Inata/genética , Inflamassomos/química , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salmo salar/classificação , Salmo salar/imunologia , Homologia de Sequência de Aminoácidos
6.
Pharmacol Res ; 101: 56-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26305431

RESUMO

Voltage-gated ion channels are the molecular determinants of cellular excitability. This group of ion channels is one of the most important pharmacological targets in excitable tissues such as nervous system, cardiac and skeletal muscle. Moreover, voltage-gated ion channels are expressed in non-excitable cells, where they mediate key cellular functions through intracellular biochemical mechanisms rather than rapid electrical signaling. This review aims at illustrating the pharmacological impact of these ion channels, highlighting in particular the structural details and physiological functions of two of them - the high conductance voltage- and Ca(2+)-gated K(+) (BK) channels and voltage-gated proton (Hv1) channels- in non-excitable cells. BK channels have been implicated in a variety of physiological processes ranging from regulation of smooth muscle tone to modulation of hormone and neurotransmitter release. Interestingly, BK channels are also involved in modulating K(+) transport in the mammalian kidney and colon epithelium with a potential role in the hyperkalemic phenotype observed in patients with familial hyperkalemic hypertension type 2, and in the pathophysiology of hypertension. In addition, BK channels are responsible for resting and stimulated Ca(2+)-activated K(+) secretion in the distal colon. Hv1 channels have been detected in many cell types, including macrophages, blood cells, lung epithelia, skeletal muscle and microglia. These channels have a central role in the phagocytic system. In macrophages, Hv1 channels participate in the generation of reactive oxygen species in the respiratory burst during the process of phagocytosis.


Assuntos
Canais Iônicos/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Tratamento Farmacológico , Humanos , Canais Iônicos/química , Canais Iônicos/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Modelos Biológicos , Modelos Moleculares , Terapia de Alvo Molecular
7.
Viruses ; 16(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675898

RESUMO

Piscine orthoreovirus (PRV) is a pathogen that causes heart and skeletal muscle inflammation in Salmo salar and has also been linked to circulatory disorders in other farmed salmonids, such as Oncorhynchus kisutch and Oncorhynchus mykiss. The virus has a segmented, double-stranded RNA genome, which makes it possible to undergo genetic reassortment and increase its genomic diversity through point mutations. In this study, genetic reassortment in PRV was assessed using the full genome sequences available in public databases. This study used full genome sequences that were concatenated and genome-wide reassortment events, and phylogenetic analyses were performed using the recombination/reassortment detection program version 5 (RDP5 V 5.5) software. Additionally, each segment was aligned codon by codon, and overall mean distance and selection was tested using the Molecular Evolutionary Genetics Analysis X software, version 10.2 (MEGA X version 10.2). The results showed that there were 17 significant reassortment events in 12 reassortant sequences, involving genome exchange between low and highly virulent genotypes. PRV sequences from different salmonid host species did not appear to limit the reassortment. This study found that PRV frequently undergoes reassortment events to increase the diversity of its segmented genome, leading to antigenic variation and increased virulence. This study also noted that to date, no reassortment events have been described between PRV-1 and PRV-3 genotypes. However, the number of complete genomic sequences within each genotype is uneven. This is important because PRV-3 induces cross-protection against PRV-1, making it a potential vaccine candidate.


Assuntos
Evolução Molecular , Doenças dos Peixes , Genoma Viral , Orthoreovirus , Filogenia , Vírus Reordenados , Infecções por Reoviridae , Seleção Genética , Orthoreovirus/genética , Orthoreovirus/classificação , Animais , Vírus Reordenados/genética , Vírus Reordenados/classificação , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Doenças dos Peixes/virologia , Genótipo , Variação Genética , Oncorhynchus mykiss/virologia
8.
Pathogens ; 12(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887768

RESUMO

The influenza A virus (IAV) poses a significant global threat to public health and food security. Particularly concerning is the avian influenza virus (AIV) subtype H5N1, which has spread from Europe to North and Central/South America. This review presents recent developments in IAV evolution in birds, mammals, and humans in Chile. Chile's encounter with IAV began in 2002, with the highly pathogenic avian influenza (HPAI) H7N3 virus, derived from a unique South American low pathogenic avian influenza (LPAI) virus. In 2016-2017, LPAI H7N6 caused outbreaks in turkey, linked to wild birds in Chile and Bolivia. The pandemic influenza A (H1N1) 2009 (H1N1pdm09) virus in 2009 decreased egg production in turkeys. Since 2012, diverse IAV subtypes have emerged in backyard poultry and pigs. Reassortant AIVs, incorporating genes from both North and South American isolates, have been found in wild birds since 2007. Notably, from December 2022, HPAI H5N1 was detected in wild birds, sea lions, and a human, along Chile's north coast. It was introduced through Atlantic migratory flyways from North America. These findings emphasize the need for enhanced biosecurity on poultry farms and ongoing genomic surveillance to understand and manage AIVs in both wild and domestic bird populations in Chile.

9.
Animals (Basel) ; 13(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003180

RESUMO

Aquaculture fish are kept for long periods in sea cages or tanks. Consequently, accumulated stress causes the fish to present serious problems with critical economic losses. Fish food has been supplemented to reduce this stress, using many components as amino acids such as tryptophan. This study aims to determine the transcriptional effect of tryptophan and cortisol on primary cell cultures of salmon head and posterior kidney. Our results indicate activation of the kynurenine pathway and serotonin activity when stimulated with tryptophan and cortisol. An amount of 95% of tryptophan is degraded by the kynurenine pathway, indicating the relevance of knowing how this pathway is activated and if stress levels associated with fish culture trigger its activation. Additionally, it is essential to know the consequence of increasing kynurenic acid "KYNA" levels in the short and long term, and even during the fish ontogeny.

10.
Sci Rep ; 13(1): 17321, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833268

RESUMO

An unbalanced composition of gut microbiota in fish is hypothesized to play a role in promoting bacterial infections, but the synergistic or antagonistic interactions between bacterial groups in relation to fish health are not well understood. We report that pathogenic species in the Piscirickettsia, Aeromonas, Renibacterium and Tenacibaculum genera were all detected in the digesta and gut mucosa of healthy Atlantic salmon without clinical signs of disease. Although Piscirickettsia salmonis (and other pathogens) occurred in greater frequencies of fish with clinical Salmonid Rickettsial Septicemia (SRS), the relative abundance was about the same as that observed in healthy fish. Remarkably, the SRS-positive fish presented with a generalized mid-gut dysbiosis and positive growth associations between Piscirickettsiaceae and members of other taxonomic families containing known pathogens. The reconstruction of metabolic phenotypes based on the bacterial networks detected in the gut and mucosa indicated the synthesis of Gram-negative virulence factors such as colanic acid and O-antigen were over-represented in SRS positive fish. This evidence indicates that cooperative interactions between organisms of different taxonomic families within localized bacterial networks might promote an opportunity for P. salmonis to cause clinical SRS in the farm environment.


Assuntos
Doenças dos Peixes , Infecções por Piscirickettsiaceae , Piscirickettsiaceae , Salmo salar , Humanos , Animais , Fatores de Virulência , Doenças dos Peixes/microbiologia
11.
Animals (Basel) ; 14(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38200828

RESUMO

Maintaining the high overall health of farmed animals is a central tenant of their well-being and care. Intense animal crowding in aquaculture promotes animal morbidity especially in the absence of straightforward methods for monitoring their health. Here, we used bacterial 16S ribosomal RNA gene sequencing to measure bacterial population dynamics during P. salmonis infection. We observed a complex bacterial community consisting of a previously undescribed core pathobiome. Notably, we detected Aliivibrio wodanis and Tenacibaculum dicentrarchi on the skin ulcers of salmon infected with P. salmonis, while Vibrio spp. were enriched on infected gills. The prevalence of these co-occurring networks indicated that coinfection with other pathogens may enhance P. salmonis pathogenicity.

12.
Microorganisms ; 12(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38257891

RESUMO

Furunculosis, caused by Aeromonas salmonicida, poses a significant threat to both salmonid and non-salmonid fish in diverse aquatic environments. This study explores the genomic intricacies of re-emergent A. salmonicida outbreaks in Atlantic salmon (Salmo salar). Previous clinical cases have exhibited pathological characteristics, such as periorbital hemorrhages and gastrointestinal abnormalities. Genomic sequencing of three Chilean isolates (ASA04, ASA05, and CIBA_5017) and 25 previously described genomes determined the pan-genome, phylogenomics, insertion sequences, and restriction-modification systems. Unique gene families have contributed to an improved understanding of the psychrophilic and mesophilic clades, while phylogenomic analysis has been used to identify mesophilic and psychrophilic strains, thereby further differentiating between typical and atypical psychrophilic isolates. Diverse insertion sequences and restriction-modification patterns have highlighted genomic structural differences, and virulence factor predictions can emphasize exotoxin disparities, especially between psychrophilic and mesophilic strains. Thus, a novel plasmid was characterized which emphasized the role of plasmids in virulence and antibiotic resistance. The analysis of antibiotic resistance factors revealed resistance against various drug classes in Chilean strains. Overall, this study elucidates the genomic dynamics of re-emergent A. salmonicida and provides novel insights into their virulence, antibiotic resistance, and population structure.

13.
Pathogens ; 11(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422619

RESUMO

Infectious pancreatic necrosis (IPN), caused by IPNV, affects several species of farmed fish, particularly Atlantic salmon, and is responsible for significant economic losses in salmon aquaculture globally. Despite the introduction of genetically resistant farmed Atlantic salmon and vaccination strategies in the Chilean salmon industry since 2019, the number of IPN outbreaks has been increasing in farmed Atlantic salmon in the freshwater phase. This study examined gross and histopathological lesions of IPNV-affected fish, as well as the IPNV nucleotide sequence encoding the VP2 protein in clinical cases. The mortality reached 0.4% per day, and the cumulative mortality was from 0.4 to 3.5%. IPNV was isolated in the CHSE-214 cell line and was confirmed by RT-PCR, and VP2 sequence analysis. The analyzed viruses belong to IPNV genotype 5 and have 11 mutations in their VP2 protein. This is the first report of IPN outbreaks in farmed Atlantic salmon genetically resistant to IPNV in Chile. Similar outbreaks were previously reported in Scotland and Norway during 2018 and 2019, respectively. This study highlights the importance of maintaining a comprehensive surveillance program in conjunction with the use of farmed Atlantic salmon genetically resistant to IPNV.

14.
Dev Comp Immunol ; 114: 103865, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918929

RESUMO

The nucleotide binding oligomerization domain like receptors, or NOD like receptors (NLRs), are intracellular receptors responsible for recognizing pathogens in vertebrates. Several NLR mammalian models have been characterized and analyzed but few studies have been performed with teleost species. In this study, we analyzed the nucleotide sequence of six mRNA variants of NLRC3 in Atlantic salmon (SsNLRC3), and we deduced the amino acid sequence coding for two different isoforms with a total length of 1135 amino acids and 1093 amino acids. We analyzed the phylogeny of all variants, including a Piscirickettsia salmonis infection in Atlantic salmon. All variants and their expression pattern during infection were analyzed using real-time qPCR. One of the analyzed variants was over-expressed during the early stages of Piscirickettsia salmonis infection, and we were able to identify two different SsNLRC3 isoforms. Lastly, we observed that an alteration in the amino acid sequence of one of the isoforms can directly affect the pathogen recognition function.


Assuntos
Doenças dos Peixes/metabolismo , Proteínas NLR/genética , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Salmo salar/imunologia , Animais , Clonagem Molecular , Doenças dos Peixes/imunologia , Variação Genética , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas NLR/metabolismo , Filogenia , Infecções por Piscirickettsiaceae/imunologia , Análise de Sequência , Transcriptoma , Proteínas de Peixe-Zebra/genética
15.
Front Immunol ; 12: 602689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679740

RESUMO

An effective and economical vaccine against the Piscirickettsia salmonis pathogen is needed for sustainable salmon farming and to reduce disease-related economic losses. Consequently, the aquaculture industry urgently needs to investigate efficient prophylactic measures. Three protein-based vaccine prototypes against Piscirickettsia salmonis were prepared from a highly pathogenic Chilean isolate. Only one vaccine effectively protected Atlantic salmon (Salmo salar), in correlation with the induction of Piscirickettsia-specific IgM antibodies and a high induction of transcripts encoding pro-inflammatory cytokines (i.e., Il-1ß and TNF-α). In addition, we studied the proteome fraction protein of P. salmonis strain Austral-005 using multidimensional protein identification technology. The analyzes identified 87 proteins of different subcellular origins, such as the cytoplasmic and membrane compartment, where many of them have virulence functions. The other two prototypes activated only the innate immune responses, but did not protect Salmo salar against P. salmonis. These results suggest that the knowledge of the formulation of vaccines based on P. salmonis proteins is useful as an effective therapy, this demonstrates the importance of the different research tools to improve the study of the different immune responses, resistance to diseases in the Atlantic salmon. We suggest that this vaccine can help prevent widespread infection by P. salmonis, in addition to being able to be used as a booster after a primary vaccine to maintain high levels of circulating protective antibodies, greatly helping to reduce the economic losses caused by the pathogen.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Doenças dos Peixes , Piscirickettsia/imunologia , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Infecções por Piscirickettsiaceae/imunologia , Infecções por Piscirickettsiaceae/microbiologia , Infecções por Piscirickettsiaceae/prevenção & controle , Infecções por Piscirickettsiaceae/veterinária , Salmo salar/imunologia , Salmo salar/microbiologia
16.
Front Physiol ; 11: 102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116802

RESUMO

The non-specific immunity can induce iron deprivation as a defense mechanism against potential bacterial pathogens, but little information is available as to its role in Antarctic fish. In this study the response of iron metabolism related genes was evaluated in liver and head kidney of the Antarctic notothenoids Notothenia coriiceps and Notothenia rossii 7 days after lipopolysaccharide (LPS) injection. Average plasma Fe2+ concentration was unaffected by treatment in any of the species. The gene expression response to LPS varied between tissues and species, being stronger in N. coriiceps and more prominent in the head kidney than liver. The reaction to LPS was marked by increased individual variability in most genes analyzed, even when the change in expression was not statistically significant, suggesting different individual sensitivity and coping responses in these wild fish. We found that iron related genes had an attenuated and homogenous response to LPS but there was no detectable relationship between plasma Fe2+ and gene expression. However, overall in both tissues and species LPS exposure set a multilevel response that concur to promote intracellular accumulation of iron, an indication that Antarctic Notothenoids use innate nutritional immunity as a resistance mechanism against pathogens.

17.
Microorganisms ; 8(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952216

RESUMO

Piscirickettsia salmonis is the causative bacterial agent of piscirickettsiosis, a systemic fish disease that significantly impacts the Chilean salmon industry. This bacterium possesses a type IV secretion system (T4SS), several proteins of the type III secretion system (T3SS), and a single heat shock protein 60 (Hsp60/GroEL). It has been suggested that due to its high antigenicity, the P. salmonis Hsp60 could be surface-exposed, translocated across the membrane, and (or) secreted into the extracellular matrix. This study tests the hypothesis that P. salmonis Hsp60 could be located on the bacterial surface. Immunogold electron microscopy and proteomic analyses suggested that although P. salmonis Hsp60 was predominantly associated with the bacterial cell cytoplasm, Hsp60-positive spots also exist on the bacterial cell envelope. IgY antibodies against P. salmonis Hsp60 protected SHK-1 cells against infection. Several bioinformatics approaches were used to assess Hsp60 translocation by the T4SS, T3SS, and T6SS, with negative results. These data support the hypothesis that small amounts of Hsp60 must reach the bacterial cell surface in a manner probably not mediated by currently characterized secretion systems, and that they remain biologically active during P. salmonis infection, possibly mediating adherence and (or) invasion.

19.
Front Immunol ; 8: 1153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28974951

RESUMO

Iron deprivation is a nutritional immunity mechanism through which fish can limit the amount of iron available to invading bacteria. The aim of this study was to evaluate the modulation of iron metabolism genes in the liver and brain of sub-Antarctic notothenioid Eleginops maclovinus challenged with Piscirickettsia salmonis. The specimens were inoculated with two P. salmonis strains: LF-89 (ATCC® VR-1361™) and Austral-005 (antibiotic resistant). Hepatic and brain samples were collected at intervals over a period of 35 days. Gene expression (by RT-qPCR) of proteins involved in iron storage, transport, and binding were statistically modulated in infected fish when compared with control counterparts. Specifically, the expression profiles of the transferrin and hemopexin genes in the liver, as well as the expression profiles of ferritin-M, ferritin-L, and transferrin in the brain, were similar for both experimental groups. Nevertheless, the remaining genes such as ferritin-H, ceruloplasmin, hepcidin, and haptoglobin presented tissue-specific expression profiles that varied in relation to the injected bacterial strain and sampling time-point. These results suggest that nutritional immunity could be an important immune defense mechanism for E. maclovinus against P. salmonis injection. This study provides relevant information for understanding iron metabolism of a sub-Antarctic notothenioid fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA