Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299126

RESUMO

Friedreich's ataxia (FRDA) is a comparatively rare autosomal recessive neurological disorder primarily caused by the homozygous expansion of a GAA trinucleotide repeat in intron 1 of the FXN gene. The repeat expansion causes gene silencing that results in deficiency of the frataxin protein leading to mitochondrial dysfunction, oxidative stress and cell death. The GAA repeat tract in some cases may be impure with sequence variations called interruptions. It has previously been observed that large interruptions of the GAA repeat tract, determined by abnormal MboII digestion, are very rare. Here we have used triplet repeat primed PCR (TP PCR) assays to identify small interruptions at the 5' and 3' ends of the GAA repeat tract through alterations in the electropherogram trace signal. We found that contrary to large interruptions, small interruptions are more common, with 3' interruptions being most frequent. Based on detection of interruptions by TP PCR assay, the patient cohort (n = 101) was stratified into four groups: 5' interruption, 3' interruption, both 5' and 3' interruptions or lacking interruption. Those patients with 3' interruptions were associated with shorter GAA1 repeat tracts and later ages at disease onset. The age at disease onset was modelled by a group-specific exponential decay model. Based on this modelling, a 3' interruption is predicted to delay disease onset by approximately 9 years relative to those lacking 5' and 3' interruptions. This highlights the key role of interruptions at the 3' end of the GAA repeat tract in modulating the disease phenotype and its impact on prognosis for the patient.


Assuntos
Ataxia de Friedreich/epidemiologia , Ataxia de Friedreich/genética , Fenótipo , Expansão das Repetições de Trinucleotídeos , Adolescente , Adulto , Fatores Etários , Idade de Início , Criança , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Adulto Jovem
2.
Hum Mol Genet ; 27(6): 992-1001, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29325032

RESUMO

Friedreich ataxia (FRDA) is an inherited recessive disorder caused by a deficiency in the mitochondrial protein frataxin. There is currently no effective treatment for FRDA available, especially for neurological deficits. In this study, we tested diazoxide, a drug commonly used as vasodilator in the treatment of acute hypertension, on cellular and animal models of FRDA. We first showed that diazoxide increases frataxin protein levels in FRDA lymphoblastoid cell lines, via the mammalian target of rapamycin (mTOR) pathway. We then explored the potential therapeutic effect of diazoxide in frataxin-deficient transgenic YG8sR mice and we found that prolonged oral administration of 3 mpk/d diazoxide was found to be safe, but produced variable effects concerning efficacy. YG8sR mice showed improved beam walk coordination abilities and footprint stride patterns, but a generally reduced locomotor activity. Moreover, they showed significantly increased frataxin expression, improved aconitase activity, and decreased protein oxidation in cerebellum and brain mitochondrial tissue extracts. Further studies are needed before this drug should be considered for FRDA clinical trials.


Assuntos
Diazóxido/farmacologia , Ataxia de Friedreich/tratamento farmacológico , Proteínas de Ligação ao Ferro/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Ataxia de Friedreich/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Frataxina
3.
Ann Neurol ; 83(4): 779-793, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29534309

RESUMO

OBJECTIVE: Friedreich's ataxia is an incurable inherited neurological disease caused by frataxin deficiency. Here, we report the neuroreparative effects of myeloablative allogeneic bone marrow transplantation in a humanized murine model of the disease. METHODS: Mice received a transplant of fluorescently tagged sex-mismatched bone marrow cells expressing wild-type frataxin and were assessed at monthly intervals using a range of behavioral motor performance tests. At 6 months post-transplant, mice were euthanized for protein and histological analysis. In an attempt to augment numbers of bone marrow-derived cells integrating within the nervous system and improve therapeutic efficacy, a subgroup of transplanted mice also received monthly subcutaneous infusions of the cytokines granulocyte-colony stimulating factor and stem cell factor. RESULTS: Transplantation caused improvements in several indicators of motor coordination and locomotor activity. Elevations in frataxin levels and antioxidant defenses were detected. Abrogation of disease pathology throughout the nervous system was apparent, together with extensive integration of bone marrow-derived cells in areas of nervous tissue injury that contributed genetic material to mature neurons, satellite-like cells, and myelinating Schwann cells by processes including cell fusion. Elevations in circulating bone marrow-derived cell numbers were detected after cytokine administration and were associated with increased frequencies of Purkinje cell fusion and bone marrow-derived dorsal root ganglion satellite-like cells. Further improvements in motor coordination and activity were evident. INTERPRETATION: Our data provide proof of concept of gene replacement therapy, via allogeneic bone marrow transplantation, that reverses neurological features of Friedreich's ataxia with the potential for rapid clinical translation. Ann Neurol 2018;83:779-793.


Assuntos
Transplante de Medula Óssea/métodos , Ataxia de Friedreich/cirurgia , Animais , Peso Corporal/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Ataxia de Friedreich/genética , Gânglios Espinais/patologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Ligação ao Ferro/genética , Leucócitos Mononucleares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular/fisiologia , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Frataxina
4.
Ann Neurol ; 81(2): 212-226, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28009062

RESUMO

OBJECTIVES: Friedreich's ataxia is a devastating neurological disease currently lacking any proven treatment. We studied the neuroprotective effects of the cytokines, granulocyte-colony stimulating factor (G-CSF) and stem cell factor (SCF) in a humanized murine model of Friedreich's ataxia. METHODS: Mice received monthly subcutaneous infusions of cytokines while also being assessed at monthly time points using an extensive range of behavioral motor performance tests. After 6 months of treatment, neurophysiological evaluation of both sensory and motor nerve conduction was performed. Subsequently, mice were sacrificed for messenger RNA, protein, and histological analysis of the dorsal root ganglia, spinal cord, and cerebellum. RESULTS: Cytokine administration resulted in significant reversal of biochemical, neuropathological, neurophysiological, and behavioural deficits associated with Friedreich's ataxia. Both G-CSF and SCF had pronounced effects on frataxin levels (the primary molecular defect in the pathogenesis of the disease) and a regulators of frataxin expression. Sustained improvements in motor coordination and locomotor activity were observed, even after onset of neurological symptoms. Treatment also restored the duration of sensory nerve compound potentials. Improvements in peripheral nerve conduction positively correlated with cytokine-induced increases in frataxin expression, providing a link between increases in frataxin and neurophysiological function. Abrogation of disease-related pathology was also evident, with reductions in inflammation/gliosis and increased neural stem cell numbers in areas of tissue injury. INTERPRETATION: These experiments show that cytokines already clinically used in other conditions offer the prospect of a novel, rapidly translatable, disease-modifying, and neuroprotective treatment for Friedreich's ataxia. Ann Neurol 2017;81:212-226.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ataxia de Friedreich/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos/farmacologia , Proteínas de Ligação ao Ferro/metabolismo , Condução Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nervos Periféricos/efeitos dos fármacos , Fator de Células-Tronco/farmacologia , Animais , Modelos Animais de Doenças , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/fisiopatologia , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fármacos Neuroprotetores/administração & dosagem , Fator de Células-Tronco/administração & dosagem , Frataxina
5.
Hum Mol Genet ; 23(25): 6838-47, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25104852

RESUMO

An inherited deficiency of the mitochondrial protein frataxin causes Friedreich's ataxia (FRDA); the mechanism by which this deficiency triggers neuro- and cardio-degeneration is unclear. Microarrays of neural tissue of animal models of the disease showed decreases in antioxidant genes, and increases in inflammatory genes. Cyclooxygenase (COX)-derived oxylipins are important mediators of inflammation. We measured oxylipin levels using tandem mass spectrometry and ELISAs in multiple cell and animal models of FRDA. Mass spectrometry revealed increases in concentrations of prostaglandins, thromboxane B2, 15-HETE and 11-HETE in cerebellar samples of knockin knockout mice. One possible explanation for the elevated oxylipins is that frataxin deficiency results in increased COX activity. While constitutive COX1 was unchanged, inducible COX2 expression was elevated over 1.35-fold (P < 0.05) in two Friedreich's mouse models and Friedreich's lymphocytes. Consistent with higher COX2 expression, its activity was also increased by 58% over controls. COX2 expression is driven by multiple transcription factors, including activator protein 1 and cAMP response element-binding protein, both of which were elevated over 1.52-fold in cerebella. Taken together, the results support the hypothesis that reduced expression of frataxin leads to elevation of COX2-mediated oxylipin synthesis stimulated by increases in transcription factors that respond to increased reactive oxygen species. These findings support a neuroinflammatory mechanism in FRDA, which has both pathomechanistic and therapeutic implications.


Assuntos
Cerebelo/metabolismo , Ciclo-Oxigenase 2/genética , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Oxilipinas/metabolismo , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular , Cerebelo/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Regulação da Expressão Gênica , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prostaglandinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tromboxano B2/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Frataxina
6.
Hum Mol Genet ; 23(25): 6848-62, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25113747

RESUMO

Inherited deficiency in the mitochondrial protein frataxin (FXN) causes the rare disease Friedreich's ataxia (FA), for which there is no successful treatment. We identified a redox deficiency in FA cells and used this to model the disease. We screened a 1600-compound library to identify existing drugs, which could be of therapeutic benefit. We identified the topical anesthetic dyclonine as protective. Dyclonine increased FXN transcript and FXN protein dose-dependently in FA cells and brains of animal models. Dyclonine also rescued FXN-dependent enzyme deficiencies in the iron-sulfur enzymes, aconitase and succinate dehydrogenase. Dyclonine induces the Nrf2 [nuclear factor (erythroid-derived 2)-like 2] transcription factor, which we show binds an upstream response element in the FXN locus. Additionally, dyclonine also inhibited the activity of histone methyltransferase G9a, known to methylate histone H3K9 to silence FA chromatin. Chronic dosing in a FA mouse model prevented a performance decline in balance beam studies. A human clinical proof-of-concept study was completed in eight FA patients dosed twice daily using a 1% dyclonine rinse for 1 week. Six of the eight patients showed an increase in buccal cell FXN levels, and fold induction was significantly correlated with disease severity. Dyclonine represents a novel therapeutic strategy that can potentially be repurposed for the treatment of FA.


Assuntos
Anestésicos Locais/farmacologia , Ataxia de Friedreich/tratamento farmacológico , Proteínas de Ligação ao Ferro/agonistas , Mucosa Bucal/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Fármacos Neuroprotetores/farmacologia , Propiofenonas/farmacologia , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Animais , Linhagem Celular , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Equilíbrio Postural/efeitos dos fármacos , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Frataxina
7.
Hum Mol Genet ; 22(13): 2662-75, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23474817

RESUMO

Large intronic expansions of the triplet-repeat sequence (GAA.TTC) cause transcriptional repression of the Frataxin gene (FXN) leading to Friedreich's ataxia (FRDA). We previously found that GAA-triplet expansions stimulate heterochromatinization in vivo in transgenic mice. We report here using chromosome conformation capture (3C) coupled with high-throughput sequencing that the GAA-repeat expansion in FRDA cells stimulates a higher-order structure as a fragment containing the GAA-repeat expansion showed an increased interaction frequency with genomic regions along the FXN locus. This is consistent with a more compacted chromatin and coincided with an increase in both constitutive H3K9me3 and facultative H3K27me3 heterochromatic marks in FRDA. Consistent with this, DNase I accessibility in regions flanking the GAA repeats in patients was decreased compared with healthy controls. Strikingly, this effect could be antagonized with the class III histone deactylase (HDAC) inhibitor vitamin B3 (nicotinamide) which activated the silenced FXN gene in several FRDA models. Examination of the FXN locus revealed a reduction of H3K9me3 and H3K27me3, an increased accessibility to DNase I and an induction of euchromatic H3 and H4 histone acetylations upon nicotinamide treatment. In addition, transcriptomic analysis of nicotinamide treated and untreated FRDA primary lymphocytes revealed that the expression of 67% of genes known to be dysregulated in FRDA was ameliorated by the treatment. These findings show that nictotinamide can up-regulate the FXN gene and reveal a potential mechanism of action for nicotinamide in reactivating the epigenetically silenced FXN gene and therefore support the further assessment of HDAC inhibitors (HDACi's) in FRDA and diseases caused by a similar mechanism.


Assuntos
Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Niacinamida/farmacologia , Expansão das Repetições de Trinucleotídeos , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular Transformada , Cromatina/genética , Cromatina/metabolismo , Desoxirribonuclease I/metabolismo , Epistasia Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Loci Gênicos , Heterocromatina/genética , Histonas/metabolismo , Proteínas de Ligação ao Ferro/genética , Metilação , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Frataxina
8.
Pharmacol Res ; 99: 344-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26141703

RESUMO

Friedreich's ataxia (FRDA) is an autosomal recessive disorder, caused by reduced levels of the protein frataxin. This protein is located in the mitochondria, where it functions in the biogenesis of iron-sulphur clusters (ISCs), which are important for the function of the mitochondrial respiratory chain complexes. Moreover, disruption in iron biogenesis may lead to oxidative stress. Oxidative stress can be the cause and/or the consequence of mitochondrial energy imbalance, leading to cell death. Fibroblasts from two FRDA mouse models, YG8R and KIKO, were used to analyse two different categories of protective compounds: deuterised poly-unsaturated fatty acids (dPUFAs) and Nrf2-inducers. The former have been shown to protect the cell from damage induced by lipid peroxidation and the latter trigger the well-known Nrf2 antioxidant pathway. Our results show that the sensitivity to oxidative stress of YG8R and KIKO mouse fibroblasts, resulting in cell death and lipid peroxidation, can be prevented by d4-PUFA and Nrf2-inducers (SFN and TBE-31). The mitochondrial membrane potential (ΔΨm) of YG8R and KIKO fibroblasts revealed a difference in their mitochondrial pathophysiology, which may be due to the different genetic basis of the two models. This suggests that variable levels of reduced frataxin may act differently on mitochondrial pathophysiology and that these two cell models could be useful in recapitulating the observed differences in the FRDA phenotype. This may reflect a different modulatory effect towards cell death that will need to be investigated further.


Assuntos
Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Peroxidação de Lipídeos/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ataxia de Friedreich/tratamento farmacológico , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenantrenos/farmacologia , Fenótipo , Frataxina
9.
Hum Mol Genet ; 21(13): 2855-61, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22447512

RESUMO

Friedreich's ataxia (FRDA) is the most common hereditary ataxia, affecting ∼3 in 100 000 individuals in Caucasian populations. It is caused by intronic GAA repeat expansions that hinder the expression of the FXN gene, resulting in defective levels of the mitochondrial protein frataxin. Sensory neurons in dorsal root ganglia (DRG) are particularly damaged by frataxin deficiency. There is no specific therapy for FRDA. Here, we show that frataxin levels can be upregulated by interferon gamma (IFNγ) in a variety of cell types, including primary cells derived from FRDA patients. IFNγ appears to act largely through a transcriptional mechanism on the FXN gene. Importantly, in vivo treatment with IFNγ increases frataxin expression in DRG neurons, prevents their pathological changes and ameliorates the sensorimotor performance in FRDA mice. These results disclose new roles for IFNγ in cellular metabolism and have direct implications for the treatment of FRDA.


Assuntos
Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Interferon gama/farmacologia , Interferon gama/fisiologia , Proteínas de Ligação ao Ferro/biossíntese , Animais , Células Cultivadas , Modelos Animais de Doenças , Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/patologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Células HeLa , Humanos , Interferon gama/uso terapêutico , Proteínas de Ligação ao Ferro/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Transcrição Gênica , Ativação Transcricional , Frataxina
10.
J Neurochem ; 126 Suppl 1: 65-79, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23859342

RESUMO

The development and use of animal and cellular models of Friedreich ataxia (FRDA) are essential requirements for the understanding of FRDA disease mechanisms and the investigation of potential FRDA therapeutic strategies. Although animal and cellular models of lower organisms have provided valuable information on certain aspects of FRDA disease and therapy, it is intuitive that the most useful models are those of mammals and mammalian cells, which are the closest in physiological terms to FRDA patients. To date, there have been considerable efforts put into the development of several different FRDA mouse models and relevant FRDA mouse and human cell line systems. We summarize the principal mammalian FRDA models, discuss the pros and cons of each system, and describe the ways in which such models have been used to address two of the fundamental, as yet unanswered, questions regarding FRDA. Namely, what is the exact pathophysiology of FRDA and what is the detailed genetic and epigenetic basis of FRDA?


Assuntos
Ataxia de Friedreich/patologia , Animais , Linhagem Celular , Expansão das Repetições de DNA , Modelos Animais de Doenças , Epigênese Genética , Ataxia de Friedreich/genética , Expressão Gênica/fisiologia , Inativação Gênica , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/fisiologia , Camundongos , Mutação Puntual/genética , Frataxina
11.
Front Neurosci ; 17: 930422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777637

RESUMO

Introduction: Friedreich's ataxia (FRDA) is an inherited recessive neurodegenerative disorder caused by a homozygous guanine-adenine-adenine (GAA) repeat expansion within intron 1 of the FXN gene, which encodes the essential mitochondrial protein frataxin. There is still no effective therapy for FRDA, therefore the development of optimal cell and animal models of the disease is one of the priorities for preclinical therapeutic testing. Methods: We obtained the latest FRDA humanized mouse model that was generated on the basis of our previous YG8sR, by Jackson laboratory [YG8JR, Fxn null:YG8s(GAA) > 800]. We characterized the behavioral, cellular, molecular and epigenetics properties of the YG8JR model, which has the largest GAA repeat sizes compared to all the current FRDA mouse models. Results: We found statistically significant behavioral deficits, together with reduced levels of frataxin mRNA and protein, and aconitase activity in YG8JR mice compared with control Y47JR mice. YG8JR mice exhibit intergenerational GAA repeat instability by the analysis of parent and offspring tissue samples. Somatic GAA repeat instability was also detected in individual brain and cerebellum tissue samples. In addition, increased DNA methylation of CpG U13 was identified in FXN GAA repeat region in the brain, cerebellum, and heart tissues. Furthermore, we show decreased histone H3K9 acetylation and increased H3K9 methylation of YG8JR cerebellum tissues within the FXN gene, upstream and downstream of the GAA repeat region compared to Y47JR controls. Discussion: These studies provide a detailed characterization of the GAA repeat expansion-based YG8JR transgenic mouse models that will help investigations of FRDA disease mechanisms and therapy.

12.
Neurobiol Dis ; 46(1): 165-71, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22289650

RESUMO

Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatologia , Proteína 2 Homóloga a MutS/genética , Proteínas/genética , Expansão das Repetições de Trinucleotídeos/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Instabilidade Genômica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Proteína 2 Homóloga a MutS/química , Proteína 3 Homóloga a MutS , Multimerização Proteica , Proteínas/química
13.
Front Mol Biosci ; 9: 830650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664670

RESUMO

Friedreich's ataxia (FA) is an inherited multisystemic neuro- and cardio-degenerative disorder. Seventy-four clinical trials are listed for FA (including past and present), but none are considered FDA/EMA-approved therapy. To date, FA therapeutic strategies have focused along two main lines using a single-drug approach: a) increasing frataxin and b) enhancing downstream pathways, including antioxidant levels and mitochondrial function. Our novel strategy employed a combinatorial approach to screen approved compounds to determine if a combination of molecules provided an additive or synergistic benefit to FA cells and/or animal models. Eight single drug molecules were administered to FA fibroblast patient cells: nicotinamide riboside, hemin, betamethasone, resveratrol, epicatechin, histone deacetylase inhibitor 109, methylene blue, and dimethyl fumarate. We measured their individual ability to induce FXN transcription and mitochondrial biogenesis in patient cells. Single-drug testing highlighted that dimethyl fumarate and resveratrol increased these two parameters. In addition, the simultaneous administration of these two drugs was the most effective in terms of FXN mRNA and mitobiogenesis increase. Interestingly, this combination also improved mitochondrial functions and reduced reactive oxygen species in neurons and cardiomyocytes. Behavioral tests in an FA mouse model treated with dimethyl fumarate and resveratrol demonstrated improved rotarod performance. Our data suggest that dimethyl fumarate is effective as a single agent, and the addition of resveratrol provides further benefit in some assays without showing toxicity. Therefore, they could be a valuable combination to counteract FA pathophysiology. Further studies will help fully understand the potential of a combined therapeutic strategy in FA pathophysiology.

14.
Front Mol Neurosci ; 15: 912780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769335

RESUMO

Computational techniques for analyzing biological images offer a great potential to enhance our knowledge of the biological processes underlying disorders of the nervous system. Friedreich's Ataxia (FRDA) is a rare progressive neurodegenerative inherited disorder caused by the low expression of frataxin, which is a small mitochondrial protein. In FRDA cells, the lack of frataxin promotes primarily mitochondrial dysfunction, an alteration of calcium (Ca2+) homeostasis and the destabilization of the actin cytoskeleton in the neurites and growth cones of sensory neurons. In this paper, a computational multilinear algebra approach was used to analyze the dynamics of the growth cone and its function in control and FRDA neurons. Computational approach, which includes principal component analysis and a multilinear algebra method, is used to quantify the dynamics of the growth cone (GC) morphology of sensory neurons from the dorsal root ganglia (DRG) of the YG8sR humanized murine model for FRDA. It was confirmed that the dynamics and patterns of turning were aberrant in the FRDA growth cones. In addition, our data suggest that other cellular processes dependent on functional GCs such as axonal regeneration might also be affected. Semiautomated computational approaches are presented to quantify differences in GC behaviors in neurodegenerative disease. In summary, the deficiency of frataxin has an adverse effect on the formation and, most importantly, the growth cones' function in adult DRG neurons. As a result, frataxin deficient DRG neurons might lose the intrinsic capability to grow and regenerate axons properly due to the dysfunctional GCs they build.

15.
Sci Rep ; 12(1): 5031, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322126

RESUMO

Epigenetic silencing in Friedreich ataxia (FRDA), induced by an expanded GAA triplet-repeat in intron 1 of the FXN gene, results in deficiency of the mitochondrial protein, frataxin. A lesser known extramitochondrial isoform of frataxin detected in erythrocytes, frataxin-E, is encoded via an alternate transcript (FXN-E) originating in intron 1 that lacks a mitochondrial targeting sequence. We show that FXN-E is deficient in FRDA, including in patient-derived cell lines, iPS-derived proprioceptive neurons, and tissues from a humanized mouse model. In a series of FRDA patients, deficiency of frataxin-E protein correlated with the length of the expanded GAA triplet-repeat, and with repeat-induced DNA hypermethylation that occurs in close proximity to the intronic origin of FXN-E. CRISPR-induced epimodification to mimic DNA hypermethylation seen in FRDA reproduced FXN-E transcriptional deficiency. Deficiency of frataxin E is a consequence of FRDA-specific epigenetic silencing, and therapeutic strategies may need to address this deficiency.


Assuntos
Ataxia de Friedreich , Animais , DNA/metabolismo , Metilação de DNA , Ataxia de Friedreich/genética , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Camundongos , Isoformas de Proteínas/metabolismo , Expansão das Repetições de Trinucleotídeos , Frataxina
16.
Neurobiol Dis ; 42(3): 496-505, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21397024

RESUMO

Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder caused by GAA repeat expansion within the FXN gene, leading to epigenetic changes and heterochromatin-mediated gene silencing that result in a frataxin protein deficit. Histone deacetylase (HDAC) inhibitors, including pimelic o-aminobenzamide compounds 106, 109 and 136, have previously been shown to reverse FXN gene silencing in short-term studies of FRDA patient cells and a knock-in mouse model, but the functional consequences of such therapeutic intervention have thus far not been described. We have now investigated the long-term therapeutic effects of 106, 109 and 136 in our GAA repeat expansion mutation-containing YG8R FRDA mouse model. We show that there is no overt toxicity up to 5 months of treatment and there is amelioration of the FRDA-like disease phenotype. Thus, while the neurological deficits of this model are mild, 109 and 106 both produced an improvement of motor coordination, whereas 109 and 136 produced increased locomotor activity. All three compounds increased global histone H3 and H4 acetylation of brain tissue, but only 109 significantly increased acetylation of specific histone residues at the FXN locus. Effects on FXN mRNA expression in CNS tissues were modest, but 109 significantly increased frataxin protein expression in brain tissue. 109 also produced significant increases in brain aconitase enzyme activity, together with reduction of neuronal pathology of the dorsal root ganglia (DRG). Overall, these results support further assessment of HDAC inhibitors for treatment of Friedreich ataxia.


Assuntos
Ataxia de Friedreich/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Atividade Motora/efeitos dos fármacos , Aconitato Hidratase/metabolismo , Análise de Variância , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Western Blotting , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatologia , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Atividade Motora/fisiologia , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teste de Desempenho do Rota-Rod
17.
Hum Mol Genet ; 17(5): 735-46, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18045775

RESUMO

Friedreich ataxia (FRDA) is caused by a homozygous GAA repeat expansion mutation within intron 1 of the FXN gene, leading to reduced expression of frataxin protein. Evidence suggests that the mutation may induce epigenetic changes and heterochromatin formation, thereby impeding gene transcription. In particular, studies using FRDA patient blood and lymphoblastoid cell lines have detected increased DNA methylation of specific CpG sites upstream of the GAA repeat and histone modifications in regions flanking the GAA repeat. In this report we show that such epigenetic changes are also present in FRDA patient brain, cerebellum and heart tissues, the primary affected systems of the disorder. Bisulfite sequence analysis of the FXN flanking GAA regions reveals a shift in the FRDA DNA methylation profile, with upstream CpG sites becoming consistently hypermethylated and downstream CpG sites becoming consistently hypomethylated. We also identify differential DNA methylation at three specific CpG sites within the FXN promoter and one CpG site within exon 1. Furthermore, we show by chromatin immunoprecipitation analysis that there is overall decreased histone H3K9 acetylation together with increased H3K9 methylation of FRDA brain tissue. Further studies of brain, cerebellum and heart tissues from our GAA repeat expansion-containing FRDA YAC transgenic mice reveal comparable epigenetic changes to those detected in FRDA patient tissue. We have thus developed a mouse model that will be a valuable resource for future therapeutic studies targeting epigenetic modifications of the FXN gene to increase frataxin expression.


Assuntos
Encéfalo/patologia , Epigênese Genética , Ataxia de Friedreich/genética , Mutação , Miocárdio/patologia , Expansão das Repetições de Trinucleotídeos/genética , Acetilação , Animais , Estudos de Casos e Controles , Cerebelo/patologia , Imunoprecipitação da Cromatina , Ilhas de CpG , Metilação de DNA , Ataxia de Friedreich/patologia , Perfilação da Expressão Gênica , Inativação Gênica , Genes Recessivos , Histonas/metabolismo , Homozigoto , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , RNA Mensageiro/análise
18.
Eur J Appl Physiol ; 110(5): 953-60, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20658249

RESUMO

Combined heat stress, dehydration, and exercise is associated with enhanced oxidative stress in humans, but the separate and combined effects of heat stress and exercise on circulatory markers of oxidative stress without the influence of dehydration remain uncertain. The purpose of this study was to determine the effects of whole body heat stress alone and in combination with exercise on blood markers of oxidative stress in euhydrated humans. Eight males wore a water-perfused suit at rest and during 6 min of one-legged knee extensor exercise under control and heat stress conditions while maintaining euhydration. Following the control trial and a 15 min resting period, hot water was perfused through the suit in order to increase core, skin, and mean body temperatures by ~1, ~6, and ~2°C, respectively. Blood samples were taken to measure reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD) and plasma isoprostanes. Heat stress alone did not alter GSH, SOD activity, or plasma isoprostanes, but increased GSSG leading to a reduction in the GSH/GSSG ratio. No changes in these variables were observed with exercise alone. Conversely, combined heat stress and exercise increased both GSH and GSSG, decreased SOD activity, but did not alter GSH/GSSG ratio or isoprostanes. In conclusion, these findings suggest that heat stress, independently of dehydration, induces non-radical oxidative stress at rest but not during moderate exercise because an increase in antioxidant defense compensates the heat stress-induced non-radical oxidative stress.


Assuntos
Água Corporal/fisiologia , Ingestão de Líquidos , Exercício Físico/fisiologia , Transtornos de Estresse por Calor/fisiopatologia , Estresse Oxidativo/fisiologia , Adulto , Biomarcadores/sangue , Glutationa/sangue , Dissulfeto de Glutationa/sangue , Glutationa Peroxidase/sangue , Transtornos de Estresse por Calor/sangue , Humanos , Isoprostanos/sangue , Masculino , Superóxido Dismutase/sangue , Adulto Jovem
19.
Front Genet ; 11: 584, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582297

RESUMO

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disorder caused by a homozygous GAA repeat expansion mutation in intron 1 of the frataxin gene (FXN), which instigates reduced transcription. As a consequence, reduced levels of frataxin protein lead to mitochondrial iron accumulation, oxidative stress, and ultimately cell death; particularly in dorsal root ganglia (DRG) sensory neurons and the dentate nucleus of the cerebellum. In addition to neurological disability, FRDA is associated with cardiomyopathy, diabetes mellitus, and skeletal deformities. Currently there is no effective treatment for FRDA and patients die prematurely. Recent findings suggest that abnormal GAA expansion plays a role in histone modification, subjecting the FXN gene to heterochromatin silencing. Therefore, as an epigenetic-based therapy, we investigated the efficacy and tolerability of two histone methyltransferase (HMTase) inhibitor compounds, BIX0194 (G9a-inhibitor) and GSK126 (EZH2-inhibitor), to specifically target and reduce H3K9me2/3 and H3K27me3 levels, respectively, in FRDA fibroblasts. We show that a combination treatment of BIX0194 and GSK126, significantly increased FXN gene expression levels and reduced the repressive histone marks. However, no increase in frataxin protein levels was observed. Nevertheless, our results are still promising and may encourage to investigate HMTase inhibitors with other synergistic epigenetic-based therapies for further preliminary studies.

20.
J Neurosci ; 28(48): 12713-24, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19036964

RESUMO

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in ataxin-3 (ATX3; MJD1) protein. In biochemical experiments, we demonstrate that mutant ATX3(exp) specifically associated with the type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1), an intracellular calcium (Ca(2+)) release channel. In electrophysiological and Ca(2+) imaging experiments, we show that InsP(3)R1 was sensitized to activation by InsP(3) in the presence of mutant ATX3(exp). We found that feeding SCA3-YAC-84Q transgenic mice with dantrolene, a clinically relevant stabilizer of intracellular Ca(2+) signaling, improved their motor performance and prevented neuronal cell loss in pontine nuclei and substantia nigra regions. Our results indicate that deranged Ca(2+) signaling may play an important role in SCA3 pathology and that Ca(2+) signaling stabilizers such as dantrolene may be considered as potential therapeutic drugs for treatment of SCA3 patients.


Assuntos
Encéfalo/metabolismo , Sinalização do Cálcio/genética , Dantroleno/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Doença de Machado-Joseph/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adulto , Animais , Animais Geneticamente Modificados , Ataxina-3 , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Dantroleno/uso terapêutico , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Humanos , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Relaxantes Musculares Centrais/farmacologia , Relaxantes Musculares Centrais/uso terapêutico , Mutação/genética , Degeneração Neural/tratamento farmacológico , Degeneração Neural/fisiopatologia , Degeneração Neural/prevenção & controle , Ponte/efeitos dos fármacos , Ponte/patologia , Ponte/fisiopatologia , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Substância Negra/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA