RESUMO
The enteric nervous system (ENS) consists of an extensive network of neurons and glial cells embedded within the wall of the gastrointestinal (GI) tract. Alterations in neuronal distribution and function are strongly associated with GI dysfunction. Current methods for assessing neuronal distribution suffer from undersampling, partly due to challenges associated with imaging and analyzing large tissue areas, and operator bias due to manual analysis. We present the Gut Analysis Toolbox (GAT), an image analysis tool designed for characterization of enteric neurons and their neurochemical coding using two-dimensional images of GI wholemount preparations. GAT is developed in Fiji, has a user-friendly interface, and offers rapid and accurate segmentation via custom deep learning (DL)-based cell segmentation models developed using StarDist, as well as a ganglia segmentation model in deepImageJ. We apply proximal neighbor-based spatial analysis to reveal differences in cellular distribution across gut regions using a public dataset. In summary, GAT provides an easy-to-use toolbox to streamline routine image analysis tasks in ENS research. GAT enhances throughput, allowing rapid unbiased analysis of larger tissue areas, multiple neuronal markers and numerous samples.
Assuntos
Sistema Nervoso Entérico , Neurônios , Neurônios/metabolismo , Neurônios/fisiologia , Animais , Processamento de Imagem Assistida por Computador/métodos , Trato Gastrointestinal , Camundongos , Aprendizado Profundo , SoftwareRESUMO
The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined. Moreover, the role of natural GPCR variants, which exhibit aberrant signaling and endosomal trafficking, in maintaining pain is unknown. Herein, substance P (SP) was found to evoke clathrin-mediated assembly of endosomal signaling complexes comprising neurokinin 1 receptor (NK1R), Gαq/i, and ßarrestin-2. Whereas the FDA-approved NK1R antagonist aprepitant induced a transient disruption of endosomal signals, analogs of netupitant designed to penetrate membranes and persist in acidic endosomes through altered lipophilicity and pKa caused sustained inhibition of endosomal signals. When injected intrathecally to target spinal NK1R+ve neurons in knockin mice expressing human NK1R, aprepitant transiently inhibited nociceptive responses to intraplantar injection of capsaicin. Conversely, netupitant analogs had more potent, efficacious, and sustained antinociceptive effects. Mice expressing C-terminally truncated human NK1R, corresponding to a natural variant with aberrant signaling and trafficking, displayed attenuated SP-evoked excitation of spinal neurons and blunted nociceptive responses to SP. Thus, sustained antagonism of the NK1R in endosomes correlates with long-lasting antinociception, and domains within the C-terminus of the NK1R are necessary for the full pronociceptive actions of SP. The results support the hypothesis that endosomal signaling of GPCRs mediates nociception and provides insight into strategies for antagonizing GPCRs in intracellular locations for the treatment of diverse diseases.
Assuntos
Endossomos , Receptores da Neurocinina-1 , Camundongos , Humanos , Animais , Receptores da Neurocinina-1/genética , Aprepitanto/farmacologia , Substância P/farmacologia , Receptores Acoplados a Proteínas G , Dor/tratamento farmacológicoRESUMO
G protein-coupled receptors (GPCRs) regulate many pathophysiological processes and are major therapeutic targets. The impact of disease on the subcellular distribution and function of GPCRs is poorly understood. We investigated trafficking and signaling of protease-activated receptor 2 (PAR2) in colitis. To localize PAR2 and assess redistribution during disease, we generated knockin mice expressing PAR2 fused to monomeric ultrastable green fluorescent protein (muGFP). PAR2-muGFP signaled and trafficked normally. PAR2 messenger RNA was detected at similar levels in Par2-mugfp and wild-type mice. Immunostaining with a GFP antibody and RNAScope in situ hybridization using F2rl1 (PAR2) and Gfp probes revealed that PAR2-muGFP was expressed in epithelial cells of the small and large intestine and in subsets of enteric and dorsal root ganglia neurons. In healthy mice, PAR2-muGFP was prominently localized to the basolateral membrane of colonocytes. In mice with colitis, PAR2-muGFP was depleted from the plasma membrane of colonocytes and redistributed to early endosomes, consistent with generation of proinflammatory proteases that activate PAR2 PAR2 agonists stimulated endocytosis of PAR2 and recruitment of Gαq, Gαi, and ß-arrestin to early endosomes of T84 colon carcinoma cells. PAR2 agonists increased paracellular permeability of colonic epithelial cells, induced colonic inflammation and hyperalgesia in mice, and stimulated proinflammatory cytokine release from segments of human colon. Knockdown of dynamin-2 (Dnm2), the major colonocyte isoform, and Dnm inhibition attenuated PAR2 endocytosis, signaling complex assembly and colonic inflammation and hyperalgesia. Thus, PAR2 endocytosis sustains protease-evoked inflammation and nociception and PAR2 in endosomes is a potential therapeutic target for colitis.
Assuntos
Colo/metabolismo , Endocitose/fisiologia , Corantes Fluorescentes/metabolismo , Inflamação/metabolismo , Dor/metabolismo , Receptor PAR-2/metabolismo , Animais , Arrestinas/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Feminino , Gânglios Espinais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade/fisiologia , Transdução de Sinais/fisiologiaRESUMO
Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/o and ß-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain.
Assuntos
Leucina Encefalina-2-Alanina/farmacologia , Inflamação/complicações , Dor/tratamento farmacológico , Dor/metabolismo , Receptores Opioides delta/agonistas , Animais , Colo/inervação , Leucina Encefalina-2-Alanina/administração & dosagem , Células HEK293 , Humanos , Camundongos , Nanopartículas/administração & dosagem , Neurônios , Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
G-protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal signaling of the neurokinin 1 receptor (NK1R) mediates nociception, as demonstrated in models of acute and neuropathic pain. An NK1R antagonist, Spantide I (Span), conjugated to cholestanol (Span-Chol), accumulates in endosomes, inhibits endosomal NK1R signaling, and causes prolonged antinociception. However, the extent to which the Chol-anchor influences long-term location and activity is poorly understood. Herein, we used fluorescent correlation spectroscopy and targeted biosensors to characterize Span-Chol over time. The Chol-anchor increased local concentration of probe at the plasma membrane. Over time we observed an increase in NK1R-binding affinity and more potent inhibition of NK1R-mediated calcium signaling. Span-Chol, but not Span, caused a persistent decrease in NK1R recruitment of ß-arrestin and receptor internalization to early endosomes. Using targeted biosensors, we mapped the relative inhibition of NK1R signaling as the receptor moved into the cell. Span selectively inhibited cell surface signaling, whereas Span-Chol partitioned into endosomal membranes and blocked endosomal signaling. In a preclinical model of pain, Span-Chol caused prolonged antinociception (>9 h), which is attributable to a three-pronged mechanism of action: increased local concentration at membranes, a prolonged decrease in NK1R endocytosis, and persistent inhibition of signaling from endosomes. Identifying the mechanisms that contribute to the increased preclinical efficacy of lipid-anchored NK1R antagonists is an important step toward understanding how we can effectively target intracellular GPCRs in disease.
Assuntos
Analgésicos/farmacologia , Colestanol/farmacologia , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Dor/tratamento farmacológico , Substância P/análogos & derivados , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colestanol/análogos & derivados , Colestanol/uso terapêutico , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Antagonistas dos Receptores de Neurocinina-1/química , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Dor/metabolismo , Manejo da Dor , Substância P/química , Substância P/farmacologia , Substância P/uso terapêuticoRESUMO
Bile acids (BAs) are known to be important regulators of intestinal motility and epithelial fluid and electrolyte transport. Over the past two decades, significant advances in identifying and characterizing the receptors, transporters, and ion channels targeted by BAs have led to exciting new insights into the molecular mechanisms involved in these processes. Our appreciation of BAs, their receptors, and BA-modulated ion channels as potential targets for the development of new approaches to treat intestinal motility and transport disorders is increasing. In the current review, we aim to summarize recent advances in our knowledge of the different BA receptors and BA-modulated ion channels present in the gastrointestinal system. We discuss how they regulate motility and epithelial transport, their roles in pathogenesis, and their therapeutic potential in a range of gastrointestinal diseases.
Assuntos
Ácidos e Sais Biliares/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Humanos , Canais Iônicos/agonistas , Receptores de Calcitriol/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacosRESUMO
Allosteric modulators (AMs) are molecules that can fine-tune signaling by G protein-coupled receptors (GPCRs). Although they are a promising therapeutic approach for treating a range of disorders, allosteric modulation of GPCRs in the context of the enteric nervous system (ENS) and digestive dysfunction remains largely unexplored. This study examined allosteric modulation of the delta opioid receptor (DOR) in the ENS and assessed the suitability of DOR AMs for the treatment of irritable bowel syndrome (IBS) symptoms using mouse models. The effects of the positive allosteric modulator (PAM) of DOR, BMS-986187, on neurogenic contractions of the mouse colon and on DOR internalization in enteric neurons were quantified. The ability of BMS-986187 to influence colonic motility was assessed both in vitro and in vivo. BMS-986187 displayed DOR-selective PAM-agonist activity and orthosteric agonist probe dependence in the mouse colon. BMS-986187 augmented the inhibitory effects of DOR agonists on neurogenic contractions and enhanced reflex-evoked DOR internalization in myenteric neurons. BMS-986187 significantly increased DOR endocytosis in myenteric neurons in response to the weakly internalizing agonist ARM390. BMS-986187 reduced the generation of complex motor patterns in the isolated intact colon. BMS-986187 reduced fecal output and diarrhea onset in the novel environment stress and castor oil models of IBS symptoms, respectively. DOR PAMs enhance DOR-mediated signaling in the ENS and have potential benefit for the treatment of dysmotility. This study provides proof of concept to support the use of GPCR AMs for the treatment of gastrointestinal motility disorders.NEW & NOTEWORTHY This study assesses the use of positive allosteric modulation as a pharmacological approach to enhance opioid receptor signaling in the enteric nervous system. We demonstrate that selective modulation of endogenous delta opioid receptor signaling can suppress colonic motility without causing constipation. We propose that allosteric modulation of opioid receptor signaling may be a therapeutic strategy to normalize gastrointestinal motility in conditions such as irritable bowel syndrome.
Assuntos
Sistema Nervoso Entérico/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Receptores Opioides delta/efeitos dos fármacos , Xantonas/farmacologia , Analgésicos Opioides/farmacologia , Benzamidas/farmacologia , Colo/efeitos dos fármacos , Sistema Nervoso Entérico/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Humanos , Receptores Opioides/efeitos dos fármacos , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Receptores Opioides mu/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Endothelial and epithelial cells form physical barriers that modulate the exchange of fluid and molecules. The integrity of these barriers can be influenced by signaling through G protein-coupled receptors (GPCRs) and ion channels. Serotonin (5-HT) is an important vasoactive mediator of tissue edema and inflammation. However, the mechanisms that drive 5-HT-induced plasma extravasation are poorly defined. The Transient Receptor Potential Vanilloid 4 (TRPV4) ion channel is an established enhancer of signaling by GPCRs that promote inflammation and endothelial barrier disruption. Here, we investigated the role of TRPV4 in 5-HT-induced plasma extravasation using pharmacological and genetic approaches. Activation of either TRPV4 or 5-HT receptors promoted significant plasma extravasation in the airway and upper gastrointestinal tract of mice. 5-HT-mediated extravasation was significantly reduced by pharmacological inhibition of the 5-HT2A receptor subtype, or with antagonism or deletion of TRPV4, consistent with functional interaction between 5-HT receptors and TRPV4. Inhibition of receptors for the neuropeptides substance P (SP) or calcitonin gene-related peptide (CGRP) diminished 5-HT-induced plasma extravasation. Supporting studies assessing treatment of HUVEC with 5-HT, CGRP, or SP was associated with ERK phosphorylation. Exposure to the TRPV4 activator GSK1016790A, but not 5-HT, increased intracellular Ca2+ in these cells. However, 5-HT pre-treatment enhanced GSK1016790A-mediated Ca2+ signaling, consistent with sensitization of TRPV4. The functional interaction was further characterized in HEK293 cells expressing 5-HT2A to reveal that TRPV4 enhances the duration of 5-HT-evoked Ca2+ signaling through a PLA2 and PKC-dependent mechanism. In summary, this study demonstrates that TRPV4 contributes to 5-HT2A-induced plasma extravasation in the airways and upper GI tract, with evidence supporting a mechanism of action involving SP and CGRP release.
Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Serotonina , Canais de Cátion TRPV , Trato Gastrointestinal Superior/efeitos dos fármacos , Animais , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/genética , Serotonina/metabolismo , Serotonina/farmacologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Trato Gastrointestinal Superior/citologia , Trato Gastrointestinal Superior/metabolismoRESUMO
Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with ß-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2 A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.
Assuntos
Dor Crônica/etiologia , Endossomos/fisiologia , Síndrome do Intestino Irritável/fisiopatologia , Receptor PAR-2/fisiologia , Transdução de Sinais/fisiologia , Animais , Endocitose , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Nociceptividade , Nociceptores/fisiologia , Tripsina/farmacologiaRESUMO
Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and ß-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or ß-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gßγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gßγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gßγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.
Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteína Quinase C/metabolismo , Receptor PAR-2/metabolismo , Animais , Catepsinas/metabolismo , Membrana Celular/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Hiperalgesia/prevenção & controle , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/antagonistas & inibidores , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Receptor PAR-2/agonistas , Transdução de Sinais/efeitos dos fármacos , Xantenos/administração & dosagem , Xantenos/farmacologiaRESUMO
Endothelial barrier disruption is a hallmark of tissue injury, edema, and inflammation. Vascular endothelial cells express the G protein-coupled receptor (GPCR) protease acctivated receptor 1 (PAR1) and the ion channel transient receptor potential vanilloid 4 (TRPV4), and these signaling proteins are known to respond to inflammatory conditions and promote edema through remodeling of cell-cell junctions and modulation of endothelial barriers. It has previously been established that signaling initiated by the related protease activated receptor 2 (PAR2) is enhanced by TRPV4 in sensory neurons and that this functional interaction plays a critical role in the development of neurogenic inflammation and nociception. Here, we investigated the PAR1-TRPV4 axis, to determine if TRPV4 plays a similar role in the control of edema mediated by thrombin-induced signaling. Using Evans Blue permeation and retention as an indication of increased vascular permeability in vivo, we showed that TRPV4 contributes to PAR1-induced vascular hyperpermeability in the airways and upper gastrointestinal tract of mice. TRPV4 contributes to sustained PAR1-induced Ca2+ signaling in recombinant cell systems and to PAR1-dependent endothelial junction remodeling in vitro. This study supports the role of GPCR-TRP channel functional interactions in inflammatory-associated changes to vascular function and indicates that TRPV4 is a signaling effector for multiple PAR family members.
Assuntos
Inflamação/genética , Receptor PAR-1/genética , Receptor PAR-2/genética , Transdução de Sinais/genética , Canais de Cátion TRPV/genética , Animais , Cálcio/metabolismo , Permeabilidade Capilar/genética , Edema/genética , Edema/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPV/metabolismoRESUMO
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins. In the gastrointestinal tract, GPCRs expressed by epithelial cells sense contents of the lumen, and GPCRs expressed by epithelial cells, myocytes, neurons, and immune cells participate in communication among cells. GPCRs control digestion, mediate digestive diseases, and coordinate repair and growth. GPCRs are the target of more than one third of therapeutic drugs, including many drugs used to treat digestive diseases. Recent advances in structural, chemical, and cell biology research have shown that GPCRs are not static binary switches that operate from the plasma membrane to control a defined set of intracellular signals. Rather, GPCRs are dynamic signaling proteins that adopt distinct conformations and subcellular distributions when associated with different ligands and intracellular effectors. An understanding of the dynamic nature of GPCRs has provided insights into the mechanism of activation and signaling of GPCRs and has shown opportunities for drug discovery. We review the allosteric modulation, biased agonism, oligomerization, and compartmentalized signaling of GPCRs that control digestion and digestive diseases. We highlight the implications of these concepts for the development of selective and effective drugs to treat diseases of the gastrointestinal tract.
Assuntos
Digestão/fisiologia , Doenças do Sistema Digestório/tratamento farmacológico , Doenças do Sistema Digestório/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Regulação Alostérica , Dimerização , Descoberta de Drogas , Endossomos/metabolismo , HumanosRESUMO
The use of opioid analgesics is severely limited due to the development of intractable constipation, mediated through activation of mu opioid receptors (MOR) expressed by enteric neurons. The related delta opioid receptor (DOR) is an emerging therapeutic target for chronic pain, depression and anxiety. Whether DOR agonists also promote sustained inhibition of colonic transit is unknown. This study examined acute and chronic tolerance to SNC80 and ARM390, which were full and partial DOR agonists in neural pathways controlling colonic motility, respectively. Excitatory pathways developed acute and chronic tolerance to SNC80, whereas only chronic tolerance developed in inhibitory pathways. Both pathways remained functional after acute or chronic ARM390 exposure. Propagating colonic motor patterns were significantly reduced after acute or chronic SNC80 treatment, but not by ARM390 pre-treatment. These findings demonstrate that SNC80 has a prolonged inhibitory effect on propagating colonic motility. ARM390 had no effect on motor patterns and thus may have fewer gastrointestinal side-effects.
Assuntos
Analgésicos Opioides/farmacologia , Colo/efeitos dos fármacos , Tolerância a Medicamentos , Receptores Opioides delta/metabolismo , Animais , Benzamidas/farmacologia , Colo/fisiologia , Estimulação Elétrica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Contração Muscular/efeitos dos fármacos , Neurônios/metabolismo , Piperazinas/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismoRESUMO
G protein-coupled receptors (GPCRs) are considered to function primarily at the plasma membrane, where they interact with extracellular ligands and couple to G proteins that transmit intracellular signals. Consequently, therapeutic drugs are designed to target GPCRs at the plasma membrane. Activated GPCRs undergo clathrin-dependent endocytosis. Whether GPCRs in endosomes control pathophysiological processes in vivo and are therapeutic targets remains uncertain. We investigated the contribution of endosomal signaling of the calcitonin receptor-like receptor (CLR) to pain transmission. Calcitonin gene-related peptide (CGRP) stimulated CLR endocytosis and activated protein kinase C (PKC) in the cytosol and extracellular signal regulated kinase (ERK) in the cytosol and nucleus. Inhibitors of clathrin and dynamin prevented CLR endocytosis and activation of cytosolic PKC and nuclear ERK, which derive from endosomal CLR. A cholestanol-conjugated antagonist, CGRP8-37, accumulated in CLR-containing endosomes and selectively inhibited CLR signaling in endosomes. CGRP caused sustained excitation of neurons in slices of rat spinal cord. Inhibitors of dynamin, ERK, and PKC suppressed persistent neuronal excitation. CGRP8-37-cholestanol, but not unconjugated CGRP8-37, prevented sustained neuronal excitation. When injected intrathecally to mice, CGRP8-37-cholestanol inhibited nociceptive responses to intraplantar injection of capsaicin, formalin, or complete Freund's adjuvant more effectively than unconjugated CGRP8-37 Our results show that CLR signals from endosomes to control pain transmission and identify CLR in endosomes as a therapeutic target for pain. Thus, GPCRs function not only at the plasma membrane but also in endosomes to control complex processes in vivo. Endosomal GPCRs are a drug target that deserve further attention.
Assuntos
Proteína Semelhante a Receptor de Calcitonina/genética , Endocitose/efeitos dos fármacos , Endossomos/metabolismo , Nociceptividade/fisiologia , Dor/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Antagonistas Adrenérgicos/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Proteína Semelhante a Receptor de Calcitonina/antagonistas & inibidores , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Capsaicina/antagonistas & inibidores , Capsaicina/farmacologia , Colestanóis/farmacologia , Clatrina/antagonistas & inibidores , Clatrina/genética , Clatrina/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Endossomos/efeitos dos fármacos , Formaldeído/antagonistas & inibidores , Formaldeído/farmacologia , Adjuvante de Freund/antagonistas & inibidores , Adjuvante de Freund/farmacologia , Regulação da Expressão Gênica , Injeções Espinhais , Masculino , Camundongos , Microtomia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nociceptividade/efeitos dos fármacos , Dor/induzido quimicamente , Dor/genética , Dor/prevenção & controle , Fragmentos de Peptídeos/farmacologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Técnicas de Cultura de TecidosRESUMO
G protein-coupled receptors (GPCRs) are essential for the neurogenic control of gastrointestinal (GI) function and are important and emerging therapeutic targets in the gut. Detailed knowledge of both the distribution and functional expression of GPCRs in the enteric nervous system (ENS) is critical toward advancing our understanding of how these receptors contribute to GI function during physiological and pathophysiological states. Equally important, but less well defined, is the complex relationship between receptor expression, ligand binding, signaling, and trafficking within enteric neurons. Neuronal GPCRs are internalized following exposure to agonists and under pathological conditions, such as intestinal inflammation. However, the relationship between the intracellular distribution of GPCRs and their signaling outputs in this setting remains a "black box". This review will briefly summarize current knowledge of agonist-evoked GPCR trafficking and location-specific signaling in the ENS and identifies key areas where future research could be focused. Greater understanding of the cellular and molecular mechanisms involved in regulating GPCR signaling in the ENS will provide new insights into GI function and may open novel avenues for therapeutic targeting of GPCRs for the treatment of digestive disorders.
Assuntos
Sistema Nervoso Entérico/fisiologia , Enterócitos/fisiologia , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Animais , Descoberta de Drogas , Humanos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Transdução de SinaisRESUMO
Endocytosis is a major mechanism through which cellular signaling by G protein-coupled receptors (GPCRs) is terminated. However, recent studies demonstrate that GPCRs are internalized in an active state and continue to signal from within endosomes, resulting in effects on cellular function that are distinct to those arising at the cell surface. Endocytosis inhibitors are commonly used to define the importance of GPCR internalization for physiological and pathophysiological processes. Here, we provide the first detailed examination of the effects of these inhibitors on neurogenic contractions of gastrointestinal smooth muscle, a key preliminary step to evaluate the importance of GPCR endocytosis for gut function. Inhibitors of clathrin-mediated endocytosis (Pitstop2, PS2) or G protein-coupled receptor kinase-2/3-dependent phosphorylation (Takeda compound 101, Cmpd101), significantly reduced GPCR internalization. However, they also attenuated cholinergic contractions through different mechanisms. PS2 abolished contractile responses by colonic muscle to SNC80 and morphine, which strongly and weakly internalize δ-opioid and µ-opioid receptors, respectively. PS2 did not affect the increased myogenic contractile activity following removal of an inhibitory neural influence (tetrodotoxin) but suppressed electrically evoked neurogenic contractions. Ca2+ signaling by myenteric neurons in response to exogenous ATP was unaffected by PS2, suggesting inhibitory actions on neurotransmitter release rather than neurotransmission. In contrast, Cmpd101 attenuated contractions to the cholinergic agonist carbachol, indicating direct effects on smooth muscle. We conclude that, although PS2 and Cmpd101 are effective blockers of GPCR endocytosis in enteric neurons, these inhibitors are unsuitable for the study of neurally mediated gut function due to their inhibitory effects on neuromuscular transmission and smooth muscle contractility.NEW & NOTEWORTHY Internalization of activated G protein-coupled receptors is a major determinant of the type and duration of subsequent downstream signaling events. Inhibitors of endocytosis effectively block opioid receptor internalization in enteric neurons. The clathrin-dependent endocytosis inhibitor Pitstop2 blocks effects of opioids on neurogenic contractions of the colon in an internalization-independent manner. These inhibitors also significantly impact cholinergic neuromuscular transmission. We conclude that these tools are unsuitable for examination of the contribution of neuronal G protein-coupled receptor endocytosis to gastrointestinal motility.
Assuntos
Benzamidas/farmacologia , Clatrina/metabolismo , Colo , Endocitose , Músculo Liso , Piridinas/farmacologia , Receptores Opioides delta/metabolismo , Sulfonamidas/farmacologia , Tiazolidinas/farmacologia , Triazóis/farmacologia , Analgésicos Opioides/farmacologia , Animais , Colo/metabolismo , Colo/patologia , Colo/fisiopatologia , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Endossomos/metabolismo , Sistema Nervoso Entérico/metabolismo , Motilidade Gastrointestinal/fisiologia , Camundongos , Músculo Liso/metabolismo , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Fosforilação/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologiaRESUMO
G-CSF or CSF-3, originally defined as a regulator of granulocyte lineage development via its cell surface receptor (G-CSFR), can play a role in inflammation, and hence in many pathologies, due to its effects on mature lineage populations. Given this, and because pain is an extremely important arthritis symptom, the efficacy of an anti-G-CSFR mAb for arthritic pain and disease was compared with that of a neutrophil-depleting mAb, anti-Ly6G, in both adaptive and innate immune-mediated murine models. Pain and disease were ameliorated in Ag-induced arthritis, zymosan-induced arthritis, and methylated BSA/IL-1 arthritis by both prophylactic and therapeutic anti-G-CSFR mAb treatment, whereas only prophylactic anti-Ly6G mAb treatment was effective. Efficacy for pain and disease correlated with reduced joint neutrophil numbers and, importantly, benefits were noted without necessarily the concomitant reduction in circulating neutrophils. Anti-G-CSFR mAb also suppressed zymosan-induced inflammatory pain. A new G-CSF-driven (methylated BSA/G-CSF) arthritis model was established enabling us to demonstrate that pain was blocked by a cyclooxygenase-2 inhibitor, suggesting an indirect effect on neurons. Correspondingly, dorsal root ganglion neurons cultured in G-CSF failed to respond to G-CSF in vitro, and Csf3r gene expression could not be detected in dorsal root ganglion neurons by single-cell RT-PCR. These data suggest that G-CSFR/G-CSF targeting may be a safe therapeutic strategy for arthritis and other inflammatory conditions, particularly those in which pain is important, as well as for inflammatory pain per se.
Assuntos
Anticorpos Bloqueadores/uso terapêutico , Artrite Experimental/terapia , Artrite Reumatoide/terapia , Imunoterapia/métodos , Neurônios/efeitos dos fármacos , Neutrófilos/imunologia , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Animais , Antígenos Ly/imunologia , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Células Cultivadas , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Procedimentos de Redução de Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Manejo da Dor , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/imunologiaRESUMO
Endogenous opioids activate opioid receptors (ORs) in the enteric nervous system to control intestinal motility and secretion. The µ-OR mediates the deleterious side effects of opioid analgesics, including constipation, respiratory depression, and addiction. Although the δ-OR (DOR) is a promising target for analgesia, the function and regulation of DOR in the colon are poorly understood. This study provides evidence that endogenous opioids activate DOR in myenteric neurons that may regulate colonic motility. The DOR agonists DADLE, deltorphin II, and SNC80 inhibited electrically evoked contractions and induced neurogenic contractions in the mouse colon. Electrical, chemical, and mechanical stimulation of the colon evoked the release of endogenous opioids, which stimulated endocytosis of DOR in the soma and proximal neurites of myenteric neurons of transgenic mice expressing DOR fused to enhanced green fluorescent protein. In contrast, DOR was not internalized in nerve fibers within the circular muscle. Administration of dextran sulfate sodium induced acute colitis, which was accompanied by DOR endocytosis and an increased density of DOR-positive nerve fibers within the circular muscle. The potency with which SNC80 inhibited neurogenic contractions was significantly enhanced in the inflamed colon. This study demonstrates that DOR-expressing neurons in the mouse colon can be activated by exogenous and endogenous opioids. Activated DOR traffics to endosomes and inhibits neurogenic motility of the colon. DOR signaling is enhanced during intestinal inflammation. This study demonstrates functional expression of DOR by myenteric neurons and supports the therapeutic targeting of DOR in the enteric nervous system. NEW & NOTEWORTHY DOR is activated during physiologically relevant reflex stimulation. Agonist-evoked DOR endocytosis is spatially and temporally regulated. A significant proportion of DOR is internalized in myenteric neurons during inflammation. The relative proportion of all myenteric neurons that expressed DOR and the overlap with the nNOS-positive population are increased in inflammation. DOR-specific innervation of the circular muscle is increased in inflammation, and this is consistent with enhanced responsiveness to the DOR agonist SNC80.
Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , Sistema Nervoso Entérico/metabolismo , Motilidade Gastrointestinal , Receptores Opioides delta/metabolismo , Animais , Benzamidas/farmacologia , Colo/fisiologia , Colo/fisiopatologia , Endocitose , Leucina Encefalina-2-Alanina/metabolismo , Sistema Nervoso Entérico/fisiologia , Sistema Nervoso Entérico/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Oligopeptídeos/metabolismo , Piperazinas/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides delta/genéticaRESUMO
Sensory nerves are equipped with receptors and ion channels that allow them to detect and respond to diverse chemical, mechanical, and thermal stimuli. These sensory proteins include G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) ion channels. A subclass of peptidergic sensory nerves express GPCRs and TRP channels that detect noxious, irritant, and inflammatory stimuli. Activation of these nerves triggers protective mechanisms that lead to withdrawal from danger (pain), removal of irritants (itch, cough), and resolution of infection (neurogenic inflammation). The GPCR-TRP axis is central to these mechanisms. Signals that emanate from the GPCR superfamily converge on the small TRP family, leading to channel sensitization and activation, which amplify pain, itch, cough, and neurogenic inflammation. Herein we discuss how GPCRs and TRP channels function independently and synergistically to excite sensory nerves that mediate noxious and irritant responses and inflammation in the skin and the gastrointestinal and respiratory systems. We discuss the signaling mechanisms that underlie the GPCR-TRP axis and evaluate how new information about the structure of GPCRs and TRP channels provides insights into their functional interactions. We propose that a deeper understanding of the GPCR-TRP axis may facilitate the development of more selective and effective therapies to treat dysregulated processes that underlie chronic pain, itch, cough, and inflammation.
Assuntos
Inflamação/metabolismo , Receptor Cross-Talk , Receptores Acoplados a Proteínas G/metabolismo , Transtornos de Sensação/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Desenho de Fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Ligantes , Terapia de Alvo Molecular , Limiar da Dor , Receptor Cross-Talk/efeitos dos fármacos , Transtornos de Sensação/tratamento farmacológico , Transtornos de Sensação/fisiopatologia , Células Receptoras Sensoriais/efeitos dos fármacos , Fármacos do Sistema Sensorial/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Vísceras/inervaçãoRESUMO
Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gßγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gßγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gßγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gßγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases.