Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1837(5): 683-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24183693

RESUMO

Rhodopsin is a classical two-state G protein-coupled receptor (GPCR). In the dark, its 11-cis retinal chromophore serves as an inverse agonist to lock the receptor in an inactive state. Retinal-protein and protein-protein interactions have evolved to reduce the basal activity of the receptor in order to achieve low dark noise in the visual system. In contrast, absorption of light triggers rapid isomerization of the retinal, which drives the conversion of the receptor to a fully active conformation. Several specific protein-protein interactions have evolved that maintain the lifetime of the active state in order to increase the sensitivity of this receptor for dim-light vision in vertebrates. In this article, we review the molecular interactions that stabilize rhodopsin in the dark-state and describe the use of solid-state NMR spectroscopy for probing the structural changes that occur upon light-activation. Amino acid conservation provides a guide for those interactions that are common in the class A GPCRs as well as those that are unique to the visual system. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Assuntos
Sequência Conservada , Modelos Moleculares , Retinaldeído/química , Rodopsina/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Isomerismo , Luz , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Retinaldeído/metabolismo , Rodopsina/metabolismo
2.
Structure ; 28(9): 1004-1013.e4, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470317

RESUMO

Despite high-resolution crystal structures of both inactive and active G protein-coupled receptors (GPCRs), it is still not known how ligands trigger the large structural change on the intracellular side of the receptor since the conformational changes that occur within the extracellular ligand-binding region upon activation are subtle. Here, we use solid-state NMR and Fourier transform infrared spectroscopy on rhodopsin to show that Trp2656.48 within the CWxP motif on transmembrane helix H6 constrains a proline hinge in the inactive state, suggesting that activation results in unraveling of the H6 backbone within this motif, a local change in dynamics that allows helix H6 to swing outward. Notably, Tyr3017.48 within activation switch 2 appears to mimic the negative allosteric sodium ion found in other family A GPCRs, a finding that is broadly relevant to the mechanism of receptor activation.


Assuntos
Prolina/química , Rodopsina/química , Rodopsina/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Conformação Proteica , Rodopsina/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Triptofano/química , Triptofano/genética , Tirosina/química , Tirosina/metabolismo
3.
Nat Struct Mol Biol ; 23(8): 738-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376589

RESUMO

Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins.


Assuntos
Rodopsina/química , Regulação Alostérica , Animais , Bovinos , Células HEK293 , Humanos , Ligação de Hidrogênio , Cetonas/química , Transdução de Sinal Luminoso , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Rodopsina/fisiologia , Transducina/química
4.
Nat Commun ; 7: 12683, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585742

RESUMO

The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its ß-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation.


Assuntos
Retina/fisiologia , Retinaldeído/química , Rodopsina/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Methods Mol Biol ; 1271: 159-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25697523

RESUMO

We describe the use of solid-state magic angle spinning NMR spectroscopy for characterizing the structure and dynamics of dark, inactive rhodopsin and the active metarhodopsin II intermediate. Solid-state NMR spectroscopy is well suited for structural measurements in both detergent micelles and membrane bilayer environments. We first outline the methods for large-scale production of stable, functional rhodopsin containing (13)C- and (15)N-labeled amino acids. The expression methods make use of eukaryotic HEK293S cell lines that produce correctly folded, fully functional receptors. We subsequently describe the basic methods used for solid-state magic angle spinning NMR measurements of chemical shifts and dipolar couplings, which provide information on rhodopsin structure and dynamics, and describe the use of low-temperature methods to trap the active metarhodopsin II intermediate.


Assuntos
Rodopsina/química , Aminoácidos/química , Linhagem Celular , Humanos , Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular , Fotoquímica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA