Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(18): 8273-8285, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38656154

RESUMO

A series of ligands based upon a 1,3-diimino-isoindoline framework have been synthesized and investigated as pincer-type (N∧N∧N) chelates for Pt(II). The synthetic route allows different combinations of heterocyclic moieties (including pyridyl, thiazole, and isoquinoline) to yield new unsymmetrical ligands. Pt(L1-6)Cl complexes were obtained and characterized using a range of spectroscopic and analytical techniques: 1H and 13C NMR, IR, UV-vis and luminescence spectroscopies, elemental analyses, high-resolution mass spectrometry, electrochemistry, and one example via X-ray crystallography which showed a distorted square planar environment at Pt(II). Cyclic voltammetry on the complexes showed one irreversible oxidation between +0.75 and +1 V (attributed to Pt2+/3+ couple) and a number of ligand-based reductions; in four complexes, two fully reversible reductions were noted between -1.4 and -1.9 V. Photophysical studies showed that Pt(L1-6)Cl absorbs efficiently in the visible region through a combination of ligand-based bands and metal-to-ligand charge-transfer features at 400-550 nm, with assignments supported by DFT calculations. Excitation at 500 nm led to luminescence (studied in both solutions and solid state) in all cases with different combinations of the heterocyclic donors providing tuning of the emission wavelength around 550-678 nm.

2.
Inorg Chem ; 63(21): 9931-9940, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38738860

RESUMO

A series of mixed ligand, photoluminescent organometallic Ir(III) complexes have been synthesized to incorporate substituted 2-phenyl-1H-naphtho[2,3-d]imidazole cyclometalating ligands. The structures of three example complexes were categorically confirmed using X-ray crystallography each sharing very similar structural traits including evidence of interligand hydrogen bond contacts that account for the shielding effects observed in the 1H NMR spectra. The structural iterations of the cyclometalated ligand provide tuning of the principal electronic transitions that determine the visible absorption and emission properties of the complexes: emission can be tuned in the visible region between 550 and 610 nm and with triplet lifetimes up to 10 µs. The nature of the emitting state varies across the series of complexes, with different admixtures of ligand-centered and metal-to-ligand charge transfer triplet levels evident. Finally, the use of the complexes as photosensitizers in triplet-triplet annihilation energy upconversion (TTA-UC) was investigated in the solution state. The study showed that the complexes possessing the longest triplet lifetimes showed good viability as photosensitizers in TTA-UC. Therefore, the use of an electron-withdrawing group on the 2-phenyl-1H-naphtho[2,3-d]imidazole ligand framework can be used to rationally promote TTA-UC using this class of complex.

3.
Chemistry ; 29(9): e202203241, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36394514

RESUMO

A series of 2-phenylquinoxaline ligands have been synthesised that introduce either CF3 or OCF3 electron-withdrawing groups at different positions of the phenyl ring. These ligands were investigated as cyclometalating reagents for platinum(II) to give neutral complexes of the form [Pt(C^N)(acac)] (in which C^N=cyclometalating ligand; acac=acetyl acetonate). X-ray crystallographic studies on three examples showed that the complexes adopt an approximate square planar geometry. All examples revealed strong Pt-Pt linear contacts of 3.2041(6), 3.2199(3) and 3.2586(2) Å. The highly coloured complexes display efficient visible absorption at 400-500 nm (ϵ ≈5000 M-1  cm-1 ) and orange red photoluminescent characteristics (λem =603-620 nm; Φem ≤37 %), which were subtly tuned by the ligand. Triplet emitting character was confirmed by microsecond luminescence lifetimes and the photogeneration of singlet oxygen with quantum efficiencies up to 57 %. Each complex was investigated as a photosensitiser for triplet-triplet annihilation energy upconversion using 9,10-diphenylanthracene as the annihilator species: a range of good upconversion efficiencies (ΦUC 5.9-14.1 %) were observed and shown to be strongly influenced by the ligand structure in each case.

4.
Inorg Chem ; 62(48): 19446-19456, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37984058

RESUMO

A series of photoluminescent Ru(II) polypyridine complexes have been synthesized in a manner that varies the extent of the cationic charge. Two ligand systems (L1 and L2), based upon 2,2'-bipyridine (bipy) mono- or difunctionalized at the 5- or 5,5'-positions using N-methylimidazolium groups, were utilized. The resulting Ru(II) species therefore carried +3, +4, +6, and +8 complex moieties based on a [Ru(bipy)3]2+ core. Tetra-cationic [Ru(bipy)2(L2)][PF6]4 was characterized using XRD, revealing H-bonding interactions between two of the counteranions and the cationic unit. The ground-state features of the complexes were found to closely resemble those of the parent unfunctionalized [Ru(bipy)3]2+ complex. In contrast, the excited state properties produce a variation in emission maxima, including a bathochromic 44 nm shift of the 3MLCT band for the tetra-cationic complex; interestingly, further increases in overall charge to +6 and +8 produced a hypsochromic shift in the 3MLCT band. Supporting DFT calculations suggest that the trend in emission behavior may, in part, be due to the precise nature of the LUMO and its localization. The utility of a photoactive polycationic Ru(II) complex was then demonstrated through the sensitization of a polyanionic Yb(III) complex in free solution. The study shows that electrostatically driven ion pairing is sufficient to facilitate energy transfer between the 3MLCT donor state of the Ru(II) complex and the accepting 2F5/2 excited state of Yb(III).

5.
Trends Analyt Chem ; 157: 116808, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36751553

RESUMO

Cardiolipin (CL) is a mitochondria-exclusive phospholipid, primarily localised within the inner mitochondrial membrane, that plays an essential role in mitochondrial architecture and function. Aberrant CL content, structure, and localisation have all been linked to impaired mitochondrial activity and are observed in the pathophysiology of cancer and neurological, cardiovascular, and metabolic disorders. The detection, quantification, and localisation of CL species is a valuable tool to investigate mitochondrial dysfunction and the pathophysiological mechanisms underpinning several human disorders. CL is measured using liquid chromatography, usually combined with mass spectrometry, mass spectrometry imaging, shotgun lipidomics, ion mobility spectrometry, fluorometry, and radiolabelling. This review summarises available methods to analyse CL, with a particular focus on modern mass spectrometry, and evaluates their advantages and limitations. We provide guidance aimed at selecting the most appropriate technique, or combination of techniques, when analysing CL in different model systems, and highlight the clinical contexts in which measuring CL is relevant.

6.
Brain ; 144(8): 2443-2456, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734312

RESUMO

Aromatic l-amino acid decarboxylase (AADC) deficiency is a complex inherited neurological disorder of monoamine synthesis which results in dopamine and serotonin deficiency. The majority of affected individuals have variable, though often severe cognitive and motor delay, with a complex movement disorder and high risk of premature mortality. For most, standard pharmacological treatment provides only limited clinical benefit. Promising gene therapy approaches are emerging, though may not be either suitable or easily accessible for all patients. To characterize the underlying disease pathophysiology and guide precision therapies, we generated a patient-derived midbrain dopaminergic neuronal model of AADC deficiency from induced pluripotent stem cells. The neuronal model recapitulates key disease features, including absent AADC enzyme activity and dysregulated dopamine metabolism. We observed developmental defects affecting synaptic maturation and neuronal electrical properties, which were improved by lentiviral gene therapy. Bioinformatic and biochemical analyses on recombinant AADC predicted that the activity of one variant could be improved by l-3,4-dihydroxyphenylalanine (l-DOPA) administration; this hypothesis was corroborated in the patient-derived neuronal model, where l-DOPA treatment leads to amelioration of dopamine metabolites. Our study has shown that patient-derived disease modelling provides further insight into the neurodevelopmental sequelae of AADC deficiency, as well as a robust platform to investigate and develop personalized therapeutic approaches.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Descarboxilases de Aminoácido-L-Aromático/deficiência , Dopaminérgicos/farmacologia , Células-Tronco Pluripotentes Induzidas , Levodopa/farmacologia , Neurogênese , Neurônios/efeitos dos fármacos , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Humanos
7.
Chemistry ; 27(10): 3427-3439, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33242225

RESUMO

Six substituted ligands based upon 2-(naphthalen-1-yl)quinoline-4-carboxylate and 2-(naphthalen-2-yl)quinoline-4-carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII , yielding complexes of the form [Ir(C^N)2 (bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2'-bipyridine). X-ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668-693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand-centred versus MLCT character instilled by the facets of the ligand structure. Triplet-triplet annihilation upconversion (TTA-UC) measurements demonstrate that the complexes based upon the 1-naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6-6.7 %.

8.
Inorg Chem ; 60(20): 15467-15484, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34605234

RESUMO

A series of ligands have been synthesized based upon a polysubstituted 2-phenylquinoxaline core structure. These ligands introduce different combinations of fluorine and methyl substituents on both the phenyl and quinoxaline constituent rings. The resultant investigation of these species as cyclometalating agents for Ir(III) gave cationic complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N = cyclometalating ligand; bipy = 2,2'-bipyridine). X-ray crystallographic studies were conducted on four complexes and each revealed the expected distorted octahedral geometry based upon a cis-C,C and trans-N,N ligand arrangement at Ir(III). Supporting computational studies predict that each of the complexes share the same general descriptions for the frontier orbitals. TD-DFT calculations suggest MLCT contributions to the lowest energy absorption and a likely MLCT/ILCT/LLCT nature to the emitting state. Experimentally, the complexes display tunable luminescence across the yellow-orange-red part of the visible spectrum (λem = 579-655 nm).

9.
Ann Neurol ; 86(2): 225-240, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31187503

RESUMO

OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240.


Assuntos
Mutação/genética , Polineuropatias/tratamento farmacológico , Polineuropatias/genética , Piridoxal Quinase/genética , Fosfato de Piridoxal/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Suplementos Nutricionais , Feminino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Resultado do Tratamento
10.
Mov Disord ; 35(8): 1357-1368, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472658

RESUMO

BACKGROUND: Juvenile forms of parkinsonism are rare conditions with onset of bradykinesia, tremor and rigidity before the age of 21 years. These atypical presentations commonly have a genetic aetiology, highlighting important insights into underlying pathophysiology. Genetic defects may affect key proteins of the endocytic pathway and clathrin-mediated endocytosis (CME), as in DNAJC6-related juvenile parkinsonism. OBJECTIVE: To report on a new patient cohort with juvenile-onset DNAJC6 parkinsonism-dystonia and determine the functional consequences on auxilin and dopamine homeostasis. METHODS: Twenty-five children with juvenile parkinsonism were identified from a research cohort of patients with undiagnosed pediatric movement disorders. Molecular genetic investigations included autozygosity mapping studies and whole-exome sequencing. Patient fibroblasts and CSF were analyzed for auxilin, cyclin G-associated kinase and synaptic proteins. RESULTS: We identified 6 patients harboring previously unreported, homozygous nonsense DNAJC6 mutations. All presented with neurodevelopmental delay in infancy, progressive parkinsonism, and neurological regression in childhood. 123 I-FP-CIT SPECT (DaTScan) was performed in 3 patients and demonstrated reduced or absent tracer uptake in the basal ganglia. CSF neurotransmitter analysis revealed an isolated reduction of homovanillic acid. Auxilin levels were significantly reduced in both patient fibroblasts and CSF. Cyclin G-associated kinase levels in CSF were significantly increased, whereas a number of presynaptic dopaminergic proteins were reduced. CONCLUSIONS: DNAJC6 is an emerging cause of recessive juvenile parkinsonism-dystonia. DNAJC6 encodes the cochaperone protein auxilin, involved in CME of synaptic vesicles. The observed dopamine dyshomeostasis in patients is likely to be multifactorial, secondary to auxilin deficiency and/or neurodegeneration. Increased patient CSF cyclin G-associated kinase, in tandem with reduced auxilin levels, suggests a possible compensatory role of cyclin G-associated kinase, as observed in the auxilin knockout mouse. DNAJC6 parkinsonism-dystonia should be considered as a differential diagnosis for pediatric neurotransmitter disorders associated with low homovanillic acid levels. Future research in elucidating disease pathogenesis will aid the development of better treatments for this pharmacoresistant disorder. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Transtornos Parkinsonianos , Criança , Dopamina , Distonia/diagnóstico por imagem , Distonia/genética , Proteínas de Choque Térmico HSP40/genética , Homeostase , Humanos , Mutação/genética , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética
11.
Inorg Chem ; 59(4): 2266-2277, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32013422

RESUMO

A series of heteroleptic, neutral iridium(III) complexes of the form [Ir(L)2(N^O)] (where L = cyclometalated 2,3-disubstituted quinoxaline and N^O = ancillary picolinate or pyrazinoate) are described in terms of their synthesis and spectroscopic properties, with supporting computational analyses providing additional insight into the electronic properties. The 10 [Ir(L)2(N^O)] complexes were characterized using a range of analytical techniques (including 1H, 13C, and 19F NMR and IR spectroscopies and mass spectrometry). One of the examples was structurally characterized using X-ray diffraction. The redox properties were determined using cyclic voltammetry, and the electronic properties were investigated using UV-vis, time-resolved luminescence, and transient absorption spectroscopies. The complexes are phosphorescent in the red region of the visible spectrum (λem = 633-680 nm), with lifetimes typically of hundreds of nanoseconds and quantum yields ca. 5% in aerated chloroform. A combination of spectroscopic and computational analyses suggests that the long-wavelength absorption and emission properties of these complexes are strongly characterized by a combination of spin-forbidden metal-to-ligand charge-transfer and quinoxaline-centered transitions. The emission wavelength in these complexes can thus be controlled in two ways: first, substitution of the cyclometalating quinoxaline ligand can perturb both the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital levels (LUMO, Cl atoms on the ligand induce the largest bathochromic shift), and second, the choice of the ancillary ligand can influence the HOMO energy (pyrazinoate stabilizes the HOMO, inducing hypsochromic shifts).

12.
Am J Hum Genet ; 99(6): 1325-1337, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912044

RESUMO

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms that are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B6 vitamer metabolism or by inactivation of PLP, which can occur when compounds accumulate as a result of inborn errors of other pathways or when small molecules are ingested. Whole-exome sequencing of two children from a consanguineous family with pyridoxine-dependent epilepsy revealed a homozygous nonsense mutation in proline synthetase co-transcribed homolog (bacterial), PROSC, which encodes a PLP-binding protein of hitherto unknown function. Subsequent sequencing of 29 unrelated indivduals with pyridoxine-responsive epilepsy identified four additional children with biallelic PROSC mutations. Pre-treatment cerebrospinal fluid samples showed low PLP concentrations and evidence of reduced activity of PLP-dependent enzymes. However, cultured fibroblasts showed excessive PLP accumulation. An E.coli mutant lacking the PROSC homolog (ΔYggS) is pyridoxine sensitive; complementation with human PROSC restored growth whereas hPROSC encoding p.Leu175Pro, p.Arg241Gln, and p.Ser78Ter did not. PLP, a highly reactive aldehyde, poses a problem for cells, which is how to supply enough PLP for apoenzymes while maintaining free PLP concentrations low enough to avoid unwanted reactions with other important cellular nucleophiles. Although the mechanism involved is not fully understood, our studies suggest that PROSC is involved in intracellular homeostatic regulation of PLP, supplying this cofactor to apoenzymes while minimizing any toxic side reactions.


Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Homeostase/genética , Mutação , Proteínas/genética , Fosfato de Piridoxal/metabolismo , Vitamina B 6/metabolismo , Adolescente , Carnosina/análogos & derivados , Carnosina/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Exoma/genética , Feminino , Fibroblastos , Homozigoto , Humanos , Lactente , Masculino , Linhagem , Prolina/metabolismo , Vitamina B 6/sangue
13.
J Inherit Metab Dis ; 42(4): 655-672, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916789

RESUMO

Cerebral folate deficiency is typically defined as a deficiency of the major folate species 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) in the presence of normal peripheral total folate levels. However, it should be noted that cerebral folate deficiency is also often used to describe conditions where CSF 5-MTHF is low, in the presence of low or undefined peripheral folate levels. Known defects of folate transport are deficiency of the proton coupled folate transporter, associated with systemic as well as cerebral folate deficiency, and deficiency of the folate receptor alpha, leading to an isolated cerebral folate deficiency associated with intractable seizures, developmental delay and/or regression, progressive ataxia and choreoathetoid movement disorders. Inborn errors of folate metabolism include deficiencies of the enzymes methylenetetrahydrofolate reductase, dihydrofolate reductase and 5,10-methenyltetrahydrofolate synthetase. Cerebral folate deficiency is potentially a treatable condition and so prompt recognition of these inborn errors and initiation of appropriate therapy is of paramount importance. Secondary cerebral folate deficiency may be observed in other inherited metabolic diseases, including disorders of the mitochondrial oxidative phosphorylation system, serine deficiency, and pyridoxine dependent epilepsy. Other secondary causes of cerebral folate deficiency include the effects of drugs, immune response activation, toxic insults and oxidative stress. This review describes the absorption, transport and metabolism of folate within the body; analytical methods to measure folate species in blood, plasma and CSF; inherited and acquired causes of cerebral folate deficiency; and possible treatment options in those patients found to have cerebral folate deficiency.


Assuntos
Encefalopatias Metabólicas Congênitas/diagnóstico , Epilepsia/diagnóstico , Deficiência de Ácido Fólico/diagnóstico , Ácido Fólico/uso terapêutico , Tetra-Hidrofolatos/deficiência , Encéfalo/patologia , Encefalopatias Metabólicas Congênitas/líquido cefalorraquidiano , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Encefalopatias Metabólicas Congênitas/genética , Diagnóstico Diferencial , Epilepsia/líquido cefalorraquidiano , Epilepsia/tratamento farmacológico , Epilepsia/genética , Receptor 1 de Folato/genética , Deficiência de Ácido Fólico/líquido cefalorraquidiano , Deficiência de Ácido Fólico/tratamento farmacológico , Deficiência de Ácido Fólico/genética , Humanos , Tetra-Hidrofolatos/líquido cefalorraquidiano
14.
Chemistry ; 24(34): 8577-8588, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29668061

RESUMO

A series of substituted 2-phenylquinoxaline ligands have been explored to finely tune the visible emission properties of a corresponding set of cationic, cyclometallated iridium(III) complexes. The electronic and redox properties of the complexes were investigated through experimental (including time-resolved luminescence and transient absorption spectroscopy) and theoretical methods. The complexes display absorption and phosphorescent emissions in the visible region that are attributed to metal to ligand charge-transfer transitions. The different substitution patterns of the ligands induce variations in these parameters. Time-dependent DFT studies support these assignments and show that there is likely to be a strong spin-forbidden contribution to the visible absorption bands at λ=500-600 nm. Calculations also reliably predict the magnitude and trends in triplet emitting wavelengths for the series of complexes. The complexes were assessed as potential sensitisers in triplet-triplet annihilation upconversion experiments by using 9,10-diphenylanthracene as the acceptor; the methylated variants performed especially well with impressive upconversion quantum yields of up to 39.3 %.

15.
Brain ; 140(11): 2820-2837, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053833

RESUMO

Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropathology and downstream consequences of riboflavin transporter mutations are unclear. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between riboflavin transporter mutations and Brown-Vialetto-Van Laere syndrome, identifying 22 pathogenic mutations in SLC52A2 and SLC52A3, 14 of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column-medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain, we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. Electron transport chain complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila melanogaster riboflavin transporter homologue revealed reduced levels of riboflavin, downstream metabolites, and electron transport chain complex I activity. This in turn led to abnormal mitochondrial membrane potential, respiratory chain activity and morphology. Riboflavin transporter knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings expand the genetic, clinical and neuropathological features of Brown-Vialetto-Van Laere syndrome, implicate mitochondrial dysfunction as a downstream consequence of riboflavin transporter gene defects, and validate riboflavin esters as a potential therapeutic strategy.


Assuntos
Encéfalo/patologia , Paralisia Bulbar Progressiva/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana Transportadoras/genética , Receptores Acoplados a Proteínas G/genética , Medula Espinal/patologia , Adolescente , Animais , Atrofia , Encéfalo/ultraestrutura , Paralisia Bulbar Progressiva/metabolismo , Paralisia Bulbar Progressiva/patologia , Criança , Pré-Escolar , Citrato (si)-Sintase/metabolismo , Drosophila melanogaster , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Técnicas In Vitro , Lactente , Locomoção/genética , Longevidade/genética , Masculino , Microscopia Eletrônica , Vias Neurais , Riboflavina , Tratos Espinocerebelares/patologia , Tratos Espinotalâmicos/patologia , Adulto Jovem
16.
Biochim Biophys Acta ; 1864(6): 676-682, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26994895

RESUMO

We report here a clinical case of a patient with a novel mutation (Arg347→Gly) in the gene encoding aromatic amino acid decarboxylase (AADC) that is associated with AADC deficiency. The variant R347G in the purified recombinant form exhibits, similarly to the pathogenic mutation R347Q previously studied, a 475-fold drop of kcat compared to the wild-type enzyme. In attempting to unravel the reason(s) for this catalytic defect, we have carried out bioinformatics analyses of the crystal structure of AADC-carbidopa complex with the modelled catalytic loop (residues 328-339). Arg347 appears to interact with Phe103, as well as with both Leu333 and Asp345. We have then prepared and characterized the artificial F103L, R347K and D345A mutants. F103L, D345A and R347K exhibit about 13-, 97-, and 345-fold kcat decrease compared to the wild-type AADC, respectively. However, unlike F103L, the R347G, R347K and R347Q mutants as well as the D345A variant appear to be more defective in catalysis than in protein folding. Moreover, the latter mutants, unlike the wild-type protein and the F103L variant, share a peculiar binding mode of dopa methyl ester consisting of formation of a quinonoid intermediate. This finding strongly suggests that their catalytic defects are mainly due to a misplacement of the substrate at the active site. Taken together, our results highlight the importance of the Arg347-Leu333-Asp345 hydrogen-bonds network in the catalysis of AADC and reveal the molecular basis for the pathogenicity of the variants R347. Following the above results, a therapeutic treatment for patients bearing the mutation R347G is proposed.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Mutação , Descarboxilases de Aminoácido-L-Aromático/genética , Catálise , Modelos Moleculares , Ligação Proteica
17.
Chemistry ; 23(39): 9407-9418, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28543913

RESUMO

A first-generation machine-assisted approach towards the preparation of hybrid ligand/metal materials has been developed. A comparison of synthetic approaches demonstrates that incorporation of both flow chemistry and microwave heating can be successfully applied to the rapid synthesis of a range of new phenyl-1H-pyrazoles (ppz) substituted with electron-withdrawing groups (-F, -CF3 , -OCF3 , and -SF5 ). These, in turn, can be translated into heteroleptic complexes, [Ir(ppz)2 (bipy)]BF4 (bipy=2,2'-bipyridine). Microwave-assisted synthesis for the IrIII complexes allows isolation of spectroscopically pure species in less than 1 h of reaction time starting from IrCl3 . All of the new complexes have been characterised photophysically (including nanosecond time-resolved transient absorption spectroscopy), electrochemically, and by TD-DFT studies. The complexes exhibit ligand-dependent, tuneable, green-yellow luminescence (500-560 nm), with quantum yields in the range 5-15 %.

18.
Inorg Chem ; 56(19): 11565-11576, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28921970

RESUMO

A series of tris-heteroleptic iridium complexes of the form [Ir(C^N1)(C^N2)(acac)] combining 2-phenylpyridine (ppy), 2-(2,4-difluorophenyl)pyridine (dFppy), 1-phenylpyrazole (ppz), and 1-(2,4-difluorophenyl)pyrazole (dFppz) as the C^N ligands have been synthesized and fully characterized by NMR, X-ray crystallography, UV-vis absorption and emission spectroscopy, and electrochemical methods. It is shown that "static properties" (e.g., absorption and emission spectra and redox potentials) are primarily dictated by the overall architecture of the complex, while "dynamic properties" (e.g., excited-state lifetime and radiative and nonradiative rate constants) are, in addition, sensitive to the specific positioning of the substituents. As a result, the two complexes [Ir(dFppy)(ppz)(acac)] and [Ir(ppy)(dFppz)(acac)] have the same emission maxima and redox potentials, but their radiative and nonradiative rate constants differ significantly by a factor ∼2. Then acetylacetonate (acac) was replaced by picolinate (pic), and two pairs of diastereoisomers were obtained. As expected, the use of pic as the ancillary ligand results in blue-shifted emission, stabilization of the oxidation potential, and improvement of the photoluminescence quantum yield, and only minor differences in the optoelectronic properties are found between the two diastereoisomers of each pair.

19.
Mol Genet Metab ; 117(1): 42-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26647175

RESUMO

We describe neurotransmitter abnormalities in two patients with drug-resistant epilepsy resulting from deleterious de novo mutations in sodium channel genes. Whole exome sequencing identified a de novo SCN2A splice-site mutation (c.2379+1G>A, p.Glu717Gly.fs*30) resulting in deletion of exon 14, in a 10-year old male with early onset global developmental delay, intermittent ataxia, autism, hypotonia, epileptic encephalopathy and cerebral/cerebellar atrophy. In the cerebrospinal fluid both homovanillic acid and 5-hydroxyindoleacetic acid were significantly decreased; extensive biochemical and genetic investigations ruled out primary neurotransmitter deficiencies and other known inborn errors of metabolism. In an 8-year old female with an early onset intractable epileptic encephalopathy, developmental regression, and progressive cerebellar atrophy, a previously unreported de novo missense mutation was identified in SCN8A (c.5615G>A; p.Arg1872Gln), affecting a highly conserved residue located in the C-terminal of the Nav1.6 protein. Aside from decreased homovanillic acid and 5-hydroxyindoleacetic acid, 5-methyltetrahydrofolate was also found to be low. We hypothesize that these channelopathies cause abnormal synaptic mono-amine metabolite secretion/uptake via impaired vesicular release and imbalance in electrochemical ion gradients, which in turn aggravate the seizures. Treatment with oral 5-hydroxytryptophan, l-Dopa/Carbidopa, and a dopa agonist resulted in mild improvement of seizure control in the male case, most likely via dopamine and serotonin receptor activated signal transduction and modulation of glutamatergic, GABA-ergic and glycinergic neurotransmission. Neurotransmitter analysis in other sodium channelopathy patients will help validate our findings, potentially yielding novel treatment opportunities.


Assuntos
Canalopatias/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia/metabolismo , Mutação de Sentido Incorreto , Neurotransmissores/deficiência , Convulsões/etiologia , Transtorno Autístico/etiologia , Transtorno Autístico/genética , Canalopatias/tratamento farmacológico , Criança , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Exoma , Feminino , Ácido Homovanílico/líquido cefalorraquidiano , Humanos , Ácido Hidroxi-Indolacético/líquido cefalorraquidiano , Masculino , Hipotonia Muscular/etiologia , Hipotonia Muscular/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurotransmissores/metabolismo , Receptores Dopaminérgicos/metabolismo , Convulsões/genética , Análise de Sequência de DNA , Canais de Sódio/deficiência , Canais de Sódio/genética , Tetra-Hidrofolatos/líquido cefalorraquidiano
20.
Chemistry ; 22(41): 14548-59, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27443697

RESUMO

Three new sets of mononuclear Ln(III) complexes of general formulas [LnL3 ]⋅CH3 OH [Ln(III) =Yb (1), Er (2), Dy (3), Gd (4), and Eu (5)], [LnL2 (tmh)(CH3 OH)]⋅n H2 O⋅m CH3 OH [Ln(III) =Yb (1 b), Er (2 b), Dy (3 b), Gd (4 b)], and [LnL2 (tta)(CH3 OH)]⋅CH3 OH [Ln(III) =Yb (1 c), Er (2 c), Dy (3 c), Gd (4 c)] were prepared by the reaction of Ln(CF3 SO3 )⋅n H2 O salts with the tridentate ligand 2-(tetrazol-5-yl)-1,10-phenanthroline (HL) and, for the last two sets, additionally with the ß-diketonate ligands 2,2,6,6-tetramethylheptanoate (tmh) and 2-thenoyltrifluoroacetonate (tta), respectively. In the [LnL3 ]⋅CH3 OH complexes the Ln(III) ions are coordinated to three phenanthroline tetrazolate ligands with an LnN9 coordination sphere. Dynamic ac magnetic measurements on 1-3 reveal that these complexes only exhibit single-molecule magnet (SMM) behavior when an external dc magnetic field is applied, with Ueff values of 11.7 K (1), 16.0 K (2), and 20.2 K (3). When the tridentate phenanthroline tetrazolate ligand is replaced by one molecule of methanol and the ß-diketonate ligand tmh (1 b-3 b) or tta (1 c-3 c), a significant increase in Ueff occurs and, in the case of the Dy(III) complexes 3 b and 3 c, out-of-phase χ'' signals below 15 and 10 K, respectively, are observed in zero dc magnetic field. CASSCF+RASSI ab initio calculations performed on the Dy(III) complexes support the experimental results. Thus, for 3 the ground Kramers' doublet is far from being axial and the first excited state is found to be very close in energy to the ground state, so the relaxation barrier in this case is almost negligible. Conversely, for 3 b and 3 c, the ground Kramers' doublet is axial with a small quantum tunneling of the magnetization, and the energy difference between the ground and first Kramers' doublets is much higher, which allows these compounds to behave as SMMs at zero field. Moreover, these calculations support the larger Ueff observed for 3 b compared to 3 c. Additionally, the solid-state photophysical properties of 1, 2, 4, and 5 show that the phenanthroline tetrazolate ligand can act as an effective antenna to sensitize the characteristic Yb(III) , Er(III) , and Eu(III) emissions through an energy-transfer process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA