Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 606(7913): 298-304, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614215

RESUMO

Confining particles to distances below their de Broglie wavelength discretizes their motional state. This fundamental effect is observed in many physical systems, ranging from electrons confined in atoms or quantum dots1,2 to ultracold atoms trapped in optical tweezers3,4. In solid-state photonics, a long-standing goal has been to achieve fully tunable quantum confinement of optically active electron-hole pairs, known as excitons. To confine excitons, existing approaches mainly rely on material modulation5, which suffers from poor control over the energy and position of trapping potentials. This has severely impeded the engineering of large-scale quantum photonic systems. Here we demonstrate electrically controlled quantum confinement of neutral excitons in 2D semiconductors. By combining gate-defined in-plane electric fields with inherent interactions between excitons and free charges in a lateral p-i-n junction, we achieve exciton confinement below 10 nm. Quantization of excitonic motion manifests in the measured optical response as a ladder of discrete voltage-dependent states below the continuum. Furthermore, we observe that our confining potentials lead to a strong modification of the relative wave function of excitons. Our technique provides an experimental route towards creating scalable arrays of identical single-photon sources and has wide-ranging implications for realizing strongly correlated photonic phases6,7 and on-chip optical quantum information processors8,9.

2.
Nature ; 595(7865): 53-57, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194018

RESUMO

When the Coulomb repulsion between electrons dominates over their kinetic energy, electrons in two-dimensional systems are predicted to spontaneously break continuous-translation symmetry and form a quantum crystal1. Efforts to observe2-12 this elusive state of matter, termed a Wigner crystal, in two-dimensional extended systems have primarily focused on conductivity measurements on electrons confined to a single Landau level at high magnetic fields. Here we use optical spectroscopy to demonstrate that electrons in a monolayer semiconductor with density lower than 3 × 1011 per centimetre squared form a Wigner crystal. The combination of a high electron effective mass and reduced dielectric screening enables us to observe electronic charge order even in the absence of a moiré potential or an external magnetic field. The interactions between a resonantly injected exciton and electrons arranged in a periodic lattice modify the exciton bandstructure so that an umklapp resonance arises in the optical reflection spectrum, heralding the presence of charge order13. Our findings demonstrate that charge-tunable transition metal dichalcogenide monolayers14 enable the investigation of previously uncharted territory for many-body physics where interaction energy dominates over kinetic energy.

3.
Nano Lett ; 22(18): 7363-7369, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124418

RESUMO

Graphene and its heterostructures provide a unique and versatile playground for explorations of strongly correlated electronic phases, ranging from unconventional fractional quantum Hall (FQH) states in a monolayer system to a plethora of superconducting and insulating states in twisted bilayers. However, the access to those fascinating phases has been thus far entirely restricted to transport techniques, due to the lack of a robust energy bandgap that makes graphene hard to access optically. Here we demonstrate an all-optical, noninvasive spectroscopic tool for probing electronic correlations in graphene using excited Rydberg excitons in an adjacent transition metal dichalcogenide monolayer. These excitons are highly susceptible to the compressibility of graphene electrons, allowing us to detect the formation of odd-denominator FQH states at high magnetic fields. Owing to its submicron spatial resolution, the technique we demonstrate circumvents spatial inhomogeneities and paves the way for optical studies of correlated states in optically inactive atomically thin materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA