Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(3): e1010258, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35275967

RESUMO

Few aquatic animal negative-sense RNA viruses have been characterized, and their role in disease is poorly understood. Here, we describe a virus isolated from diseased freshwater turtles from a Florida farm in 2007 and from an ongoing epizootic among free-ranging populations of Florida softshell turtles (Apalone ferox), Florida red-bellied cooters (Pseudemys nelsoni), and peninsula cooters (Pseudemys peninsularis). Affected turtles presented with similar neurological signs, oral and genital ulceration, and secondary microbial infections. Microscopic lesions were most severe in the softshell turtles and included heterophilic/histiocytic meningoencephalitis, multi-organ vasculitis, and cytologic observation of leukocytic intracytoplasmic inclusions. The virus was isolated using Terrapene heart (TH-1) cells. Ultrastructurally, viral particles were round to pleomorphic and acquired an envelope with prominent surface projections by budding from the cell membrane. Viral genomes were sequenced from cDNA libraries of two nearly identical isolates and determined to be bi-segmented, with an ambisense coding arrangement. The larger segment encodes a predicted RNA-directed RNA polymerase (RdRP) and a putative zinc-binding matrix protein. The smaller segment encodes a putative nucleoprotein and an envelope glycoprotein precursor (GPC). Thus, the genome organization of this turtle virus resembles that of arenaviruses. Phylogenetic analysis shows that the RdRP of the turtle virus is highly diverged from the RdRPs of all known negative-sense RNA viruses and forms a deep branch within the phylum Negarnaviricota, that is not affiliated with any known group of viruses, even at the class level. In contrast, the GPC protein of the turtle virus is confidently affiliated with homologs from a distinct group of fish hantaviruses. Thus, the turtle virus is expected to become the founder of a new taxon of negative-sense RNA viruses, at least with a family rank, but likely, an order or even a class. These viruses probably evolved either by reassortment or by intrasegment recombination between a virus from a distinct branch of negarnaviruses distant from all known groups and a hanta-like aquatic virus. We suggest the provisional name Tosoviridae for the putative new family, with Turtle fraservirus 1 (TFV1) as the type species within the genus Fraservirus. A conventional RT-PCR assay, targeting the TFV1 RdRP, confirmed the presence of viral RNA in multiple tissues and exudates from diseased turtles. The systemic nature of the TFV1 infection was further supported by labeling of cells within lesions using in situ hybridization targeting the RNA of the TFV1 RdRP.


Assuntos
Tartarugas , Animais , Vírus de DNA , Água Doce , Vírus de RNA de Sentido Negativo , Filogenia , RNA Polimerase Dependente de RNA , Répteis
2.
Am J Physiol Gastrointest Liver Physiol ; 322(3): G327-G345, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34984929

RESUMO

Alcoholic chronic pancreatitis (ACP) is a fibroinflammatory disease of the pancreas. However, metabolic basis of ACP is not clearly understood. In this study, we evaluated differential pancreatic injury in hepatic alcohol dehydrogenase-deficient (ADH-) deer mice fed chronic ethanol (EtOH), chronic plus binge EtOH, and chronic plus binge EtOH and fatty acid ethyl esters (FAEEs, nonoxidative metabolites of EtOH) to understand the metabolic basis of ACP. Hepatic ADH- and ADH normal (ADH+) deer mice were fed Lieber-DeCarli liquid diet containing 3% (wt/vol) EtOH for 3 mo. One week before the euthanization, chronic EtOH-fed mice were further administered with an oral gavage of binge EtOH with/without FAEEs. Blood alcohol concentration (BAC), pancreatic injury, and inflammatory markers were measured. Pancreatic morphology, ultrastructural changes, and endoplasmic reticulum (ER)/oxidative stress were examined using H&E staining, electron microscopy, immunostaining, and/or Western blot, respectively. Overall, BAC was substantially increased in chronic EtOH-fed groups of ADH- versus ADH+ deer mice. A significant change in pancreatic acinar cell morphology, with mild to moderate fibrosis and ultrastructural changes evident by dilatations and disruption of ER cisternae, ER/oxidative stress along with increased levels of inflammatory markers were observed in the pancreas of chronic EtOH-fed groups of ADH- versus ADH+ deer mice. Furthermore, chronic plus binge EtOH and FAEEs exposure elevated BAC, enhanced ER/oxidative stress, and exacerbated chronic EtOH-induced pancreatic injury in ADH- deer mice suggesting a role of increased body burden of EtOH and its metabolism under reduced hepatic ADH in initiation and progression of ACP.NEW & NOTEWORTHY We established a chronic EtOH feeding model of hepatic alcohol dehydrogenase-deficient (ADH-) deer mice, which mimics several fibroinflammatory features of human alcoholic chronic pancreatitis (ACP). The fibroinflammatory and morphological features exacerbated by chronic plus binge EtOH and FAEEs exposure provide a strong case for metabolic basis of ACP. Most importantly, several pathological and molecular targets identified in this study provide a much broader understanding of the mechanism and avenues to develop therapeutics for ACP.


Assuntos
Álcool Desidrogenase , Pancreatite Alcoólica , Álcool Desidrogenase/metabolismo , Animais , Concentração Alcoólica no Sangue , Ésteres , Etanol , Ácidos Graxos/metabolismo , Peromyscus/metabolismo
3.
Dis Aquat Organ ; 149: 83-96, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35686452

RESUMO

In the spring of 2017, 2 adult lake sturgeon (LS) Acipenser fulvescens captured from the Wolf River, Wisconsin (USA), presented with multiple cutaneous plaques that, upon microscopic examination, indicated proliferative epidermitis. Ultrastructural examination of affected keratinocytes revealed particles in the nucleus having a morphology typical of herpesviruses. A degenerate PCR assay targeting the DNA polymerase catalytic subunit (pol) gene of large double-stranded DNA viruses generated amplicons of the anticipated size from skin samples, and sequences of amplicons confirmed the presence of a novel alloherpesvirus (lake sturgeon herpesvirus, LSHV) related to acipenserid herpesvirus 1 (AciHV1). The complete genome (202660 bp) of this virus was sequenced using a MiSeq System, and phylogenetic analyses substantiated the close relationship to AciHV1. A PCR assay targeting the LSHV DNA packaging terminase subunit 1 (ter1) gene demonstrated the presence of the virus in 39/42 skin lesion samples collected from wild LS captured in 2017-2019 and 2021 in 4/4 rivers in Wisconsin. Future efforts to isolate LSHV in cell culture would facilitate challenge studies to determine the disease potential of the virus.


Assuntos
Peixes , Rios , Animais , Filogenia , Reação em Cadeia da Polimerase/veterinária , Wisconsin/epidemiologia
4.
PLoS Pathog ; 15(10): e1008068, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31648236

RESUMO

Ebola virus (EBOV) infections are characterized by a pronounced lymphopenia that is highly correlative with fatalities. However, the mechanisms leading to T-cell depletion remain largely unknown. Here, we demonstrate that both viral mRNAs and antigens are detectable in CD4+ T cells despite the absence of productive infection. A protein phosphatase 1 inhibitor, 1E7-03, and siRNA-mediated suppression of viral antigens were used to demonstrate de novo synthesis of viral RNAs and antigens in CD4+ T cells, respectively. Cell-to-cell fusion of permissive Huh7 cells with non-permissive Jurkat T cells impaired productive EBOV infection suggesting the presence of a cellular restriction factor. We determined that viral transcription is partially impaired in the fusion T cells. Lastly, we demonstrate that exposure of T cells to EBOV resulted in autophagy through activation of ER-stress related pathways. These data indicate that exposure of T cells to EBOV results in an abortive infection, which likely contributes to the lymphopenia observed during EBOV infections.


Assuntos
Linfócitos T CD4-Positivos/virologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Linfopenia/imunologia , Replicação Viral/fisiologia , Animais , Antígenos Virais/biossíntese , Antígenos Virais/genética , Autofagia/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Chlorocebus aethiops , Estresse do Retículo Endoplasmático/fisiologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Indóis/farmacologia , Células Jurkat , Proteína Fosfatase 1/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/biossíntese , RNA Viral/genética , Fatores de Transcrição/metabolismo , Ureia/análogos & derivados , Ureia/farmacologia , Células Vero , Proteínas Virais/metabolismo
5.
Virus Genes ; 57(5): 448-452, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34272657

RESUMO

The genus Megalocytivirus includes viruses known to cause significant disease in aquacultured fish stocks. Herein, we report the complete genome sequences of two megalocytiviruses (MCVs) isolated from diseased albino rainbow sharks Epalzeorhynchos frenatum reared on farms in the United States in 2018 and 2019. Histopathological examination revealed typical megalocytivirus microscopic lesions (i.e., basophilic cytoplasmic inclusions) that were most commonly observed in the spleen and kidney. Transmission electron microscopic examination of spleen and kidney tissues from specimens of the 2018 case revealed hexagonally shaped virus particles with a mean diameter of 153 ± 6 nm (n = 20) from opposite vertices and 131 ± 5 nm (n = 20) from opposite faces. Two MCV-specific conventional PCR assays confirmed the presence of MCV DNA in the collected samples. Full genome sequencing of both 2018 and 2019 Epalzeorhynchos frenatus iridoviruses (EFIV) was accomplished using a next-generation sequencing approach. Phylogenomic analyses revealed that both EFIV isolates belong to the infectious spleen and kidney necrosis virus (ISKNV) genotype within the genus Megalocytivirus. This study is the first report of ISKNV in albino rainbow sharks.


Assuntos
Infecções por Vírus de DNA/genética , Genoma Viral/genética , Iridoviridae/genética , Tubarões/virologia , Animais , Infecções por Vírus de DNA/virologia , Fazendas , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Peixes/genética , Peixes/virologia , Humanos , Filogenia , Tubarões/genética , Estados Unidos , Sequenciamento Completo do Genoma
6.
J Gen Virol ; 101(7): 735-745, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32421489

RESUMO

Over the last decade, a number of USA aquaculture facilities have experienced periodic mortality events of unknown aetiology in their clownfish (Amphiprion ocellaris). Clinical signs of affected individuals included lethargy, altered body coloration, reduced body condition, tachypnea, and abnormal positioning in the water column. Samples from outbreaks were processed for routine parasitological, bacteriological, and virological diagnostic testing, but no consistent parasitic or bacterial infections were observed. Histopathological evaluation revealed individual cell necrosis and mononuclear cell inflammation in the branchial cavity, pharynx, oesophagus and/or stomach of four examined clownfish, and large basophilic inclusions within the pharyngeal mucosal epithelium of one fish. Homogenates from pooled external and internal tissues from these outbreaks were inoculated onto striped snakehead (SSN-1) cells for virus isolation and cytopathic effects were observed, resulting in monolayer lysis in the initial inoculation and upon repassage. Transmission electron microscopy of infected SSN-1 cells revealed small round particles (mean diameter=20.0-21.7 nm) within the cytoplasm, consistent with the ultrastructure of a picornavirus. Full-genome sequencing of the purified virus revealed a novel picornavirus most closely related to the bluegill picornavirus and other members of the genus Limnipivirus. Additionally, pairwise protein alignments between the clownfish picornavirus (CFPV) and other known members of the genus Limnipivirus yielded results in accordance with the current International Committee on Taxonomy of Viruses criteria for members of the same genus. Thus, CFPV represents a proposed new limnipivirus species. Future experimental challenge studies are needed to determine the role of CFPV in disease.


Assuntos
Doenças dos Peixes/virologia , Infecções por Picornaviridae/veterinária , Picornaviridae/classificação , Picornaviridae/genética , Animais , Biópsia , Linhagem Celular , Coinfecção , Doenças dos Peixes/diagnóstico , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Picornaviridae/isolamento & purificação
7.
J Gen Virol ; 101(2): 198-207, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31904317

RESUMO

The commercial production of lumpfish Cyclopterus lumpus L. is expanding with the increased demand for their use as cleaner fish, to control sea-lice numbers, at marine Atlantic salmon Salmo salar L. aquaculture sites throughout Northern Europe. A new ranavirus has been isolated from lumpfish at multiple locations in the North Atlantic area. First isolated in 2014 in the Faroe Islands, the virus has subsequently been found in lumpfish from Iceland in 2015 and from Scotland and Ireland in 2016. The Icelandic lumpfish ranavirus has been characterized by immunofluorescent antibody test, optimal growth conditions and transmission electron microscopy. Partial sequences of the major capsid protein gene from 12 isolates showed 99.79-100% nt identity between the lumpfish ranaviruses. Complete genome sequencing from three of the isolates and phylogenetic analysis based on the concatenated 26 iridovirus core genes suggest these lumpfish ranavirus isolates form a distinct clade with ranaviruses from cod Gadus morhua L. and turbot Scophthalmus maximus L. isolated in Denmark in 1979 and 1999, respectively. These data suggest that these viruses should be grouped together as a new ranavirus species, European North Atlantic Ranavirus, which encompasses ranaviruses isolated from marine fishes in European North Atlantic waters.


Assuntos
Doenças dos Peixes/virologia , Ranavirus , Animais , Aquicultura , Proteínas do Capsídeo/genética , Classificação , Dinamarca , Europa (Continente) , Peixes/virologia , Linguados/virologia , Gadus morhua/virologia , Genes Virais , Genoma Viral , Irlanda , Filogenia , Ranavirus/classificação , Ranavirus/genética , Ranavirus/isolamento & purificação , Ranavirus/ultraestrutura , Proteínas Virais/genética
8.
Biol Chem ; 401(2): 249-262, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31299006

RESUMO

Rickettsial species have independently lost several genes owing to reductive evolution while retaining those predominantly implicated in virulence, survival, and biosynthetic pathways. In this study, we have identified a previously uncharacterized Rickettsia conorii gene RC0497 as an N-acetylmuramoyl-L-alanine amidase constitutively expressed during infection of cultured human microvascular endothelial cells at the levels of both mRNA transcript and encoded protein. A homology-based search of rickettsial genomes reveals that RC0497 homologs, containing amidase_2 family and peptidoglycan binding domains, are highly conserved among the spotted fever group (SFG) rickettsiae. The recombinant RC0497 protein exhibits α-helix secondary structure, undergoes a conformational change in the presence of zinc, and exists as a dimer at higher concentrations. We have further ascertained the enzymatic activity of RC0497 via demonstration of its ability to hydrolyze Escherichia coli peptidoglycan. Confocal microscopy on E. coli expressing RC0497 and transmission immunoelectron microscopy of R. conorii revealed its localization predominantly to the cell wall, septal regions of replicating bacteria, and the membrane of vesicles pinching off the cell wall. In summary, we have identified and functionally characterized RC0497 as a peptidoglycan hydrolase unique to spotted fever rickettsiae, which may potentially serve as a novel moonlighting protein capable of performing multiple functions during host-pathogen interactions.


Assuntos
Amidoidrolases/isolamento & purificação , Amidoidrolases/metabolismo , Peptidoglicano/metabolismo , Rickettsia conorii/enzimologia , Amidoidrolases/química , Peptidoglicano/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
9.
Infect Immun ; 87(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30297526

RESUMO

Rickettsiae can cause life-threatening infections in humans. Macrophages are one of the initial targets for rickettsiae after inoculation by ticks. However, it remains poorly understood how rickettsiae remain free in macrophages prior to establishing their infection in microvascular endothelial cells. Here, we demonstrated that the concentration of Rickettsia australis was significantly greater in infected tissues of Atg5flox/flox mice than in the counterparts of Atg5flox/flox Lyz-Cre mice, in association with a reduced level of interleukin-1ß (IL-1ß) in serum. The greater concentration of R. australis in Atg5flox/flox bone marrow-derived macrophages (BMMs) than in Atg5flox/flox Lyz-Cre BMMs in vitro was abolished by exogenous treatment with recombinant IL-1ß. Rickettsia australis induced significantly increased levels of light chain 3 (LC3) form II (LC3-II) and LC3 puncta in Atg5-competent BMMs but not in Atg5-deficient BMMs, while no p62 turnover was observed. Further analysis found the colocalization of LC3 with a small portion of R. australis and Rickettsia-containing double-membrane-bound vacuoles in the BMMs of B6 mice. Moreover, treatment with rapamycin significantly increased the concentrations of R. australis in B6 BMMs compared to those in the untreated B6 BMM controls. Taken together, our results demonstrate that Atg5 favors R. australis infection in mouse macrophages in association with a suppressed level of IL-1ß production but not active autophagy flux. These data highlight the contribution of Atg5 in macrophages to the pathogenesis of rickettsial diseases.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Macrófagos/microbiologia , Rickettsia/crescimento & desenvolvimento , Animais , Células Cultivadas , Feminino , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Rickettsiose do Grupo da Febre Maculosa
10.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111568

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) nsp1 suppresses host gene expression in expressed cells by inhibiting translation and inducing endonucleolytic cleavage of host mRNAs, the latter of which leads to mRNA decay. We examined the biological functions of nsp1 in infected cells and its role in virus replication by using wild-type MERS-CoV and two mutant viruses with specific mutations in the nsp1; one mutant lacked both biological functions, while the other lacked the RNA cleavage function but retained the translation inhibition function. In Vero cells, all three viruses replicated efficiently with similar replication kinetics, while wild-type virus induced stronger host translational suppression and host mRNA degradation than the mutants, demonstrating that nsp1 suppressed host gene expression in infected cells. The mutant viruses replicated less efficiently than wild-type virus in Huh-7 cells, HeLa-derived cells, and 293-derived cells, the latter two of which stably expressed a viral receptor protein. In 293-derived cells, the three viruses accumulated similar levels of nsp1 and major viral structural proteins and did not induce IFN-ß and IFN-λ mRNAs; however, both mutants were unable to generate intracellular virus particles as efficiently as wild-type virus, leading to inefficient production of infectious viruses. These data strongly suggest that the endonucleolytic RNA cleavage function of the nsp1 promoted MERS-CoV assembly and/or budding in a 293-derived cell line. MERS-CoV nsp1 represents the first CoV gene 1 protein that plays an important role in virus assembly/budding and is the first identified viral protein whose RNA cleavage-inducing function promotes virus assembly/budding.IMPORTANCE MERS-CoV represents a high public health threat. Because CoV nsp1 is a major viral virulence factor, uncovering the biological functions of MERS-CoV nsp1 could contribute to our understanding of MERS-CoV pathogenicity and spur development of medical countermeasures. Expressed MERS-CoV nsp1 suppresses host gene expression, but its biological functions for virus replication and effects on host gene expression in infected cells are largely unexplored. We found that nsp1 suppressed host gene expression in infected cells. Our data further demonstrated that nsp1, which was not detected in virus particles, promoted virus assembly or budding in a 293-derived cell line, leading to efficient virus replication. These data suggest that nsp1 plays an important role in MERS-CoV replication and possibly affects virus-induced diseases by promoting virus particle production in infected hosts. Our data, which uncovered an unexpected novel biological function of nsp1 in virus replication, contribute to further understanding of the MERS-CoV replication strategies.


Assuntos
Infecções por Coronavirus/patologia , Expressão Gênica/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Clivagem do RNA/fisiologia , Estabilidade de RNA/fisiologia , RNA Mensageiro/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Interferon beta/biossíntese , Interferon beta/genética , Interferon gama/biossíntese , Interferon gama/genética , Células Vero , Proteínas não Estruturais Virais/genética , Montagem de Vírus/genética
11.
J Infect Dis ; 218(suppl_5): S475-S485, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30289506

RESUMO

The outer leaflet of the viral membrane of Ebola virus (EBOV) virions is enriched with phosphatidylserine (PtdSer), which is thought to play a central role in viral tropism, entry, and virus-associated immune evasion. We investigated the effects of inhibiting synthesis and/or export of PtdSer to the cell surface of infected cells on viral infectivity. Knockdown of both PtdSer synthase enzymes, PTDSS1 and PTDSS2, effectively decreased viral production. Decreased PtdSer expression resulted in an accumulation of virions at the plasma membrane and adjacent of intracellular organelles, suggesting that virion budding is impaired. The addition of inhibitors that block normal cellular trafficking of PtdSer to the plasma membrane resulted in a similar accumulation of virions and reduced viral replication. These findings demonstrate that plasma membrane-associated PtdSer is required for efficient EBOV budding, increasing EBOV infectivity, and could constitute a potential therapeutic target for the development of future countermeasures against EBOV.


Assuntos
Ebolavirus/patogenicidade , Fosfatidilserinas/fisiologia , Animais , Transporte Biológico , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Chlorocebus aethiops , Células Vero , Vírion/fisiologia , Liberação de Vírus , Replicação Viral
12.
J Infect Dis ; 218(suppl_5): S335-S345, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30289531

RESUMO

Viral apoptotic mimicry, which is defined by exposure of phosphatidylserine (PtdSer) into the outer leaflet of budding enveloped viruses, increases viral tropism, infectivity and promotes immune evasion. Here, we report that the calcium (Ca2+)-dependent scramblase, transmembrane protein 16F (TMEM16F), is responsible for the incorporation of PtdSer into virion membranes during Ebola virus infection. Infection of Huh7 cells with Ebola virus resulted in a pronounced increase in plasma membrane-associated PtdSer, which was demonstrated to be dependent on TMEM16F function. Analysis of virions using imaging flow cytometry revealed that short hairpin RNA-mediated down-regulation of TMEM16F function directly reduced virion-associated PtdSer. Taken together, these studies demonstrate that TMEM16F is a central cellular factor in the exposure of PtdSer in the outer leaflet of viral membranes.

13.
Exp Mol Pathol ; 104(1): 89-97, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29337245

RESUMO

The single most common cause of chronic pancreatitis (CP, a serious inflammatory disease) is chronic alcohol abuse, which impairs hepatic alcohol dehydrogenase (ADH, a major ethanol oxidizing enzyme). Previously, we found ~5 fold greater fatty acid ethyl esters (FAEEs), and injury in the pancreas of hepatic ADH deficient (ADH-) vs. hepatic normal ADH (ADH+) deer mice fed 3.5g% ethanol via liquid diet daily for two months. Therefore, progression of ethanol-induced pancreatic injury was determined in ADH- deer mice fed ethanol for four months to delineate the mechanism and metabolic basis of alcoholic chronic pancreatitis (ACP). In addition to a substantially increased blood alcohol concentration and plasma FAEEs, significant degenerative changes, including atrophy and loss of acinar cells in some areas, ultrastructural changes evident by such features as swelling and disintegration of endoplasmic reticulum (ER) cisternae and ER stress were observed in the pancreas of ethanol-fed ADH- deer mice vs. ADH+ deer mice. These changes are consistent with noted increases in pancreatic injury markers (plasma lipase, pancreatic trypsinogen activation peptide, FAEE synthase and cathepsin B) in ethanol-fed ADH- deer mice. Most importantly, an increased levels of pancreatic glucose regulated protein (GRP) 78 (a prominent ER stress marker) were found to be closely associated with increased phosphorylated eukaryotic initiation factor (eIF) 2α signaling molecule in PKR-like ER kinase branch of unfolded protein response (UPR) as compared to X box binding protein 1S and activating transcription factor (ATF)6 - 50kDa protein of inositol requiring enzyme 1α and ATF6 branches of UPR, respectively, in ethanol-fed ADH- vs. ADH+ deer mice. These results along with findings on plasma FAEEs, and pancreatic histology and injury markers suggest a metabolic basis of ethanol-induced pancreatic injury, and provide new avenues to understand metabolic basis and molecular mechanism of ACP.


Assuntos
Álcool Desidrogenase/metabolismo , Etil-Éteres/metabolismo , Pâncreas/patologia , Alcoolismo , Animais , Concentração Alcoólica no Sangue , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Etanol/sangue , Ácidos Graxos/metabolismo , Fígado/metabolismo , Camundongos , Pâncreas/metabolismo , Peromyscus/fisiologia
14.
Dis Aquat Organ ; 130(1): 11-24, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154268

RESUMO

The genus Megalocytivirus is the most recently described member of the family Iridoviridae; as such, little is known about the genetic diversity of this genus of globally emerging viral fish pathogens. We sequenced the genomes of 2 megalocytiviruses (MCVs) isolated from epizootics involving South American cichlids (oscar Astronotus ocellatus and keyhole cichlid Cleithracara maronii) and three spot gourami Trichopodus trichopterus sourced through the ornamental fish trade during the early 1990s. Phylogenomic analyses revealed the South American cichlid iridovirus (SACIV) and three spot gourami iridovirus (TSGIV) possess 116 open reading frames each, and form a novel clade within the turbot reddish body iridovirus genotype (TRBIV Clade 2). Both genomes displayed a unique truncated paralog of the major capsid protein gene located immediately upstream of the full-length parent gene. Histopathological examination of archived oscar tissue sections that were PCR-positive for SACIV revealed numerous cytomegalic cells characterized by basophilic intracytoplasmic inclusions within various organs, particularly the anterior kidney, spleen, intestinal lamina propria and submucosa. TSGIV-infected grunt fin (GF) cells grown in vitro displayed cytopathic effects (e.g. cytomegaly, rounding, and refractility) as early as 96 h post-infection. Ultrastructural examination of infected GF cells revealed unenveloped viral particles possessing hexagonal nucleocapsids (120 to 144 nm in diameter) and electron-dense cores within the cytoplasm, consistent with the ultrastructural morphology of a MCV. Sequencing of SACIV and TSGIV provides the first complete TRBIV Clade 2 genome sequences and expands the known host and geographic range of the TRBIV genotype to include freshwater ornamental fishes traded in North America.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Genoma Viral , Iridoviridae/genética , Filogenia , Animais , Ciclídeos , Infecções por Vírus de DNA/patologia , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/patologia , Iridoviridae/isolamento & purificação , Reação em Cadeia da Polimerase
15.
Lab Invest ; 97(10): 1245-1261, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414327

RESUMO

DCLK1 expression is critically required for maintaining growth of human colon cancer cells (hCCCs). Human colorectal tumors (CRCs) and hCCCs express a novel short isoform of DCLK1 (DCLK1-S; isoform 2) from ß-promoter of hDCLK1 gene, while normal colons express long isoform (DCLK1-L; isoform 1) from 5'(α)-promoter, suggesting that DCLK1-S, and not DCLK1-L, marks cancer stem cells (CSCs). Even though DCLK1-S differs from DCLK1-L by only six amino acids, we succeeded in generating a monospecific DCLK1-S-Antibody (PS41014), which does not cross-react with DCLK1-L, and specifically detects CSCs. Subcellular localization of S/L-isoforms was examined by immune-electron-microscopy (IEM). Surprisingly, besides plasma membrane and cytosolic fractions, S/L also localized to nuclear/mitochondrial fractions, with pronounced localization of S-isoform in the nuclei and mitochondria. Sporadic CRCs develop from adenomas. Screening colonoscopy is used for detection/resection of growths, and morphological/pathological criteria are used for risk assessment and recommendations for follow-up colonoscopy. But, these features are not precise and majority of the patients will never develop cancer. We hypothesized that antibody-based assay(s), which identify CSCs, will significantly improve prognostic value of morphological/pathological criteria. We conducted a pilot retrospective study with PS41014-Ab, by staining archived adenoma specimens from patients who developed (high-risk), or did not develop (low-risk) adenocarcinomas within 10-15 years. PS41014-Ab stained adenomas from initial and follow-up colonoscopies of high-risk patients, at significantly higher levels (three to fivefold) than adenomas from low-risk patients, suggesting that PS41014-Ab could be used as an additional tool for assessing CRC risk. CRC patients, with high DCLK1-S-expressing tumors (by qRT-PCR), were reported to have worse overall survival than low expressers. We now report that DCLK1-S-specific Ab may help to identify high-risk patients at the time of index/screening colonoscopy.


Assuntos
Anticorpos/metabolismo , Biomarcadores Tumorais/análise , Neoplasias do Colo/diagnóstico , Detecção Precoce de Câncer/métodos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Proteínas Serina-Treonina Quinases/análise , Anticorpos/análise , Biomarcadores Tumorais/metabolismo , Colo/química , Colo/patologia , Colo/cirurgia , Neoplasias do Colo/cirurgia , Colonoscopia , Quinases Semelhantes a Duplacortina , Células HCT116 , Células HEK293 , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estudos Retrospectivos
16.
J Gen Virol ; 98(9): 2258-2266, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28885138

RESUMO

The Bunyaviridae family is made up of a diverse range of viruses, some of which cause disease and are a cause for concern in human and veterinary health. Here, we report the genomic and antigenic characterization of five previously uncharacterized bunyaviruses. Based on their ultrastructure, antigenic relationships and phylogenomic relationships, the five viruses are classified as members of the Orthobunyavirus genus. Three are viruses in the California encephalitis virus serogroup and are related to Trivittatus virus; the two others are most similar to the Mermet virus in the Simbu serogroup, and to the Tataguine virus, which is not currently assigned to a serogroup. Each of these five viruses was pathogenic to newborn mice, indicating their potential to cause illness in humans and other animals.


Assuntos
Aedes/virologia , Doenças das Aves/virologia , Infecções por Bunyaviridae/veterinária , Bunyaviridae/isolamento & purificação , África , América , Animais , Bunyaviridae/classificação , Bunyaviridae/genética , Bunyaviridae/ultraestrutura , Infecções por Bunyaviridae/virologia , Camundongos , Passeriformes/virologia , Filogenia
17.
J Virol ; 90(2): 873-86, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26512089

RESUMO

UNLABELLED: Severe fever with thrombocytopenia syndrome (SFTS) virus is a newly recognized member of the genus Phlebovirus in the family Bunyaviridae. The virus was isolated from patients presenting with hemorrhagic manifestations and an initial case fatality rate of 12 to 30% was reported. Due to the recent emergence of this pathogen, there is limited knowledge on the molecular virology of SFTS virus. Recently, we reported that the SFTS virus NSs protein inhibited the activation of the beta interferon (IFN-ß) promoter. Furthermore, we also found that SFTS virus NSs relocalizes key components of the IFN response into NSs-induced cytoplasmic structures. Due to the important role these structures play during SFTS virus replication, we conducted live cell imaging studies to gain further insight into the role and trafficking of these cytoplasmic structures during virus infection. We found that some of the SFTS virus NSs-positive cytoplasmic structures were secreted to the extracellular space and endocytosed by neighboring cells. We also found that these secreted structures isolated from NSs-expressing cells and SFTS virus-infected cells were positive for the viral protein NSs and the host protein CD63, a protein associated with extracellular vesicles. Electron microscopy studies also revealed that the isolated CD63-immunoprecipitated extracellular vesicles produced during SFTS virus infection contained virions. The virions harbored within these structures were efficiently delivered to uninfected cells and were able to sustain SFTS virus replication. Altogether, these results suggest that SFTS virus exploits extracellular vesicles to mediate virus receptor-independent transmission to host cells and open the avenue for novel therapeutic strategies against SFTS virus and related pathogens. IMPORTANCE: SFTS virus is novel bunyavirus associated with hemorrhagic fever illness. Currently, limited information is available about SFTS virus. In the present study, we demonstrated that extracellular vesicles produced by SFTS virus-infected cells harbor infectious virions. We sought to determine whether these "infectious" extracellular vesicles can mediate transmission of the virus and confirmed that the SFTS virions were efficiently transported by these secreted structures into uninfected cells and were able to sustain efficient replication of SFTS virus. These results have significant impact on our understanding of how the novel tick-borne phleboviruses hijack cellular machineries to establish infection and point toward a novel mechanism for virus replication among arthropod-borne viruses.


Assuntos
Vesículas Extracelulares/virologia , Phlebovirus/isolamento & purificação , Vírion/isolamento & purificação , Vírion/fisiologia , Internalização do Vírus , Liberação de Vírus , Animais , Chlorocebus aethiops , Endocitose , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Células Vero
19.
J Virol ; 89(1): 676-87, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355879

RESUMO

UNLABELLED: A total of 2,691 mosquitoes representing 17 species was collected from eight locations in southwest Cameroon and screened for pathogenic viruses. Ten isolates of a novel reovirus (genus Dinovernavirus) were detected by culturing mosquito pools on Aedes albopictus (C6/36) cell cultures. A virus that caused overt cytopathic effects was isolated, but it did not infect vertebrate cells or produce detectable disease in infant mice after intracerebral inoculation. The virus, tentatively designated Fako virus (FAKV), represents the first 9-segment, double-stranded RNA (dsRNA) virus to be isolated in nature. FAKV appears to have a broad mosquito host range, and its detection in male specimens suggests mosquito-to-mosquito transmission in nature. The structure of the T=1 FAKV virion, determined to subnanometer resolution by cryoelectron microscopy (cryo-EM), showed only four proteins per icosahedral asymmetric unit: a dimer of the major capsid protein, one turret protein, and one clamp protein. While all other turreted reoviruses of known structures have at least two copies of the clamp protein per asymmetric unit, FAKV's clamp protein bound at only one conformer of the major capsid protein. The FAKV capsid architecture and genome organization represent the most simplified reovirus described to date, and phylogenetic analysis suggests that it arose from a more complex ancestor by serial loss-of-function events. IMPORTANCE: We describe the detection, genetic, phenotypic, and structural characteristics of a novel Dinovernavirus species isolated from mosquitoes collected in Cameroon. The virus, tentatively designated Fako virus (FAKV), is related to both single-shelled and partially double-shelled viruses. The only other described virus in this genus was isolated from cultured mosquito cells. It was previously unclear whether the phenotypic characteristics of that virus were reflective of this genus in nature or were altered during serial passaging in the chronically infected cell line. FAKV is a naturally occurring single-shelled reovirus with a unique virion architecture that lacks several key structural elements thought to stabilize a single-shelled reovirus virion, suggesting what may be the minimal number of proteins needed to form a viable reovirus particle. FAKV evolved from more complex ancestors by losing a genome segment and several virion proteins.


Assuntos
Culicidae/virologia , Genoma Viral , Reoviridae/genética , Reoviridae/isolamento & purificação , Animais , Camarões , Linhagem Celular , Análise por Conglomerados , Microscopia Crioeletrônica , Efeito Citopatogênico Viral , Evolução Molecular , Especificidade de Hospedeiro , Substâncias Macromoleculares/ultraestrutura , Masculino , Camundongos , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Reoviridae/fisiologia , Reoviridae/ultraestrutura , Análise de Sequência de DNA , Proteínas Estruturais Virais/ultraestrutura , Vírion/ultraestrutura , Cultura de Vírus
20.
Proc Natl Acad Sci U S A ; 110(48): 19615-20, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218580

RESUMO

Rickettsiae are responsible for some of the most devastating human infections. A high infectivity and severe illness after inhalation make some rickettsiae bioterrorism threats. We report that deletion of the exchange protein directly activated by cAMP (Epac) gene, Epac1, in mice protects them from an ordinarily lethal dose of rickettsiae. Inhibition of Epac1 suppresses bacterial adhesion and invasion. Most importantly, pharmacological inhibition of Epac1 in vivo using an Epac-specific small-molecule inhibitor, ESI-09, completely recapitulates the Epac1 knockout phenotype. ESI-09 treatment dramatically decreases the morbidity and mortality associated with fatal spotted fever rickettsiosis. Our results demonstrate that Epac1-mediated signaling represents a mechanism for host-pathogen interactions and that Epac1 is a potential target for the prevention and treatment of fatal rickettsioses.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Interações Hospedeiro-Patógeno/fisiologia , Hidrazonas/farmacologia , Isoxazóis/farmacologia , Infecções por Rickettsia/tratamento farmacológico , Transdução de Sinais/fisiologia , Animais , Aderência Bacteriana/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrazonas/uso terapêutico , Imuno-Histoquímica , Isoxazóis/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Rickettsia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA