Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Materials (Basel) ; 14(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572850

RESUMO

In this study, bulk samples of a CrMoNbWV high-entropy alloy (HEA) were obtained for the first time by spark plasma sintering (SPS) of mechanically alloyed (MA) powders at 1200 °C, 1300 °C, and 1400 °C. Microstructure evolution, phase formation as well as wear and corrosion behavior were investigated. The MA powders' phase composition was found to be represented by body-centered-cubic (BCC) solid solution. The solid solution partially decomposed to Laves phases under the sintering, such as Cr2Nb and (Fe, Cr)Nb, and NbVO4-VO oxides mixture. The temperature increase to 1400 °C led to a grain coarsening of the BCC phase and decreased the Laves phase content accompanied by precipitation at the grain boundaries. The sintered samples showed high hardness and compressive strength (2700-2800 MPa) at room temperature. The wear tests demonstrated excellent results in comparison to conventional wear-resistant composites. The obtained samples also exhibited high corrosion resistance under electrochemical tests in H2SO4 solution. The CrMoNbWV HEA has comparable mechanical and corrosive properties with the WNbMoTaV type HEA, but at the same time has a reduced density: CrMoNbWV-10.55 g/cm3, WNbMoTaV-12.42 g/cm3.

3.
Materials (Basel) ; 13(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906691

RESUMO

In this paper, laser powder-bed fusion (L-PBF) additive manufacturing (AM) with a high-temperature inductive platform preheating was used to fabricate intermetallic TiAl-alloy samples. The gas atomized (GA) and mechanically alloyed plasma spheroidized (MAPS) powders of the Ti-48Al-2Cr-2Nb (at. %) alloy were used as the feedstock material. The effects of L-PBF process parameters-platform preheating temperature-on the relative density, microstructure, phase composition, and mechanical properties of printed material were evaluated. Crack-free intermetallic samples with a high relative density of 99.9% were fabricated using 900 °C preheating temperature. Scanning electron microscopy and X-Ray diffraction analyses revealed a very fine microstructure consisting of lamellar α2/γ colonies, equiaxed γ grains, and retained ß phase. Compressive tests showed superior properties of AM material as compared to the conventional TiAl-alloy. However, increased oxygen content was detected in MAPS powder compared to GA powder (~1.1 wt. % and ~0.1 wt. %, respectively), which resulted in lower compressive strength and strain, but higher microhardness compared to the samples produced from GA powder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA