Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trials ; 25(1): 481, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014430

RESUMO

BACKGROUND: In standard weaning from mechanical ventilation, a successful spontaneous breathing test (SBT) consisting of 30 min 8 cmH2O pressure-support ventilation (PSV8) without positive end-expiratory pressure (PEEP) is followed by extubation with continuous suctioning; however, these practices might promote derecruitment. Evidence supports the feasibility and safety of extubation without suctioning. Ultrasound can assess lung aeration and respiratory muscles. We hypothesize that weaning aiming to preserve lung volume can yield higher rates of successful extubation. METHODS: This multicenter superiority trial will randomly assign eligible patients to receive either standard weaning [SBT: 30-min PSV8 without PEEP followed by extubation with continuous suctioning] or lung-volume-preservation weaning [SBT: 30-min PSV8 + 5 cmH2O PEEP followed by extubation with positive pressure without suctioning]. We will compare the rates of successful extubation and reintubation, ICU and hospital stays, and ultrasound measurements of the volume of aerated lung (modified lung ultrasound score), diaphragm and intercostal muscle thickness, and thickening fraction before and after successful or failed SBT. Patients will be followed for 90 days after randomization. DISCUSSION: We aim to recruit a large sample of representative patients (N = 1600). Our study cannot elucidate the specific effects of PEEP during SBT and of positive pressure during extubation; the results will show the joint effects derived from the synergy of these two factors. Although universal ultrasound monitoring of lungs, diaphragm, and intercostal muscles throughout weaning is unfeasible, if derecruitment is a major cause of weaning failure, ultrasound may help clinicians decide about extubation in high-risk and borderline patients. TRIAL REGISTRATION: The Research Ethics Committee (CEIm) of the Fundació Unió Catalana d'Hospitals approved the study (CEI 22/67 and 23/26). Registered at ClinicalTrials.gov in August 2023. Identifier: NCT05526053.


Assuntos
Extubação , Pulmão , Estudos Multicêntricos como Assunto , Respiração com Pressão Positiva , Desmame do Respirador , Humanos , Desmame do Respirador/métodos , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/efeitos adversos , Pulmão/fisiopatologia , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar , Ultrassonografia , Resultado do Tratamento , Masculino , Fatores de Tempo , Feminino , Adulto , Pessoa de Meia-Idade , Respiração Artificial/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Idoso , Sucção/métodos , Estudos de Equivalência como Asunto
2.
Artigo em Inglês | MEDLINE | ID: mdl-38082854

RESUMO

Respiratory patterns present great variability, both in healthy subjects and in patients with different diseases and forms of nasal, oral, superficial or deep breathing. The analysis of this variability depends, among others, on the device used to record the signals that describe these patterns. In this study, we propose multivariable regression models to estimate tidal volume (VT) considering different breathing patterns. Twenty-three healthy volunteers underwent continuous multisensor recordings considering different modes of breathing. Respiratory flow and volume signals were recorded with a pneumotachograph and thoracic and abdominal respiratory inductive plethysmographic bands. Several respiratory parameters were extracted from the volume signals, such as inspiratory and expiratory areas (Areains, Areaexp), maximum volume relative to the cycle start and end (VTins, VTexp), inspiratory and expiratory time (Tins, Texp), cycle duration (Ttot), and normalized parameters of clinical interest. The parameters with the greatest individual predictive power were combined using multivariable models to estimate VT. Their performance were quantified in terms of determination coefficient (R2), relative error (ER) and interquartile range (IQR). Using only three parameters, the results obtained for the thoracic band (VTexp, Ttot, Areaexp) were better than those obtained from the abdominal band (VTexp, Tins, Areains) with R2 = 0.94 (IQR: 0.07); ER = 6.99 (IQR: 6.12) vs R2 = 0.91 (IQR: 0.09), ER = 8.70 (IQR: 4.62). Overall performance increased to R2 = 0.97 (IQR: 0.02) and ER = 4.60 (IQR: 3.68) when parameters from the different bands were combined, further improving when was applied to segments with different inspiration-expiration patterns. In particular, the nose-nose ER = 1.39 (IQR: 0.73), nose-mouth ER = 2.11 (IQR: 1.23) and mouth-mouth ER = 2.29 (IQR: 1.44) patterns showed the best results compared to those obtained for basal, shallow and deep breathing.Clinical relevance- Respiratory pattern variability can be described using multivariable regression model for tidal volume.


Assuntos
Respiração , Taxa Respiratória , Humanos , Volume de Ventilação Pulmonar , Nariz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA