Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 8(1): e1000282, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20098722

RESUMO

Development in multicellular organisms depends on the ability of individual cells to coordinate their behavior by means of small signaling molecules to form correctly patterned tissues. In plants, a unique mechanism of directional transport of the signaling molecule auxin between cells connects cell polarity and tissue patterning and thus is required for many aspects of plant development. Direction of auxin flow is determined by polar subcellular localization of PIN auxin efflux transporters. Dynamic PIN polar localization results from the constitutive endocytic cycling to and from the plasma membrane, but it is not well understood how this mechanism connects to regulators of cell polarity. The Rho family small GTPases ROPs/RACs are master regulators of cell polarity, however their role in regulating polar protein trafficking and polar auxin transport has not been established. Here, by analysis of mutants and transgenic plants, we show that the ROP interactor and polarity regulator scaffold protein ICR1 is required for recruitment of PIN proteins to the polar domains at the plasma membrane. icr1 mutant embryos and plants display an a array of severe developmental aberrations that are caused by compromised differential auxin distribution. ICR1 functions at the plasma membrane where it is required for exocytosis but does not recycle together with PINs. ICR1 expression is quickly induced by auxin but is suppressed at the positions of stable auxin maxima in the hypophysis and later in the embryonic and mature root meristems. Our results imply that ICR1 is part of an auxin regulated positive feedback loop realized by a unique integration of auxin-dependent transcriptional regulation into ROP-mediated modulation of cell polarity. Thus, ICR1 forms an auxin-modulated link between cell polarity, exocytosis, and auxin transport-dependent tissue patterning.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Transporte/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas rho de Ligação ao GTP/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Polaridade Celular/genética , Exocitose/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
2.
Curr Biol ; 17(11): 947-52, 2007 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-17493810

RESUMO

ROP/RAC GTPases are master regulators of cell polarity in plants, implicated in the regulation of diverse signaling cascades including cytoskeleton organization, vesicle trafficking, and Ca(2+) gradients [1-8]. The involvement of ROPs in differentiation processes is yet unknown. Here we show the identification of a novel ROP/RAC effector, designated interactor of constitutive active ROPs 1 (ICR1), that interacts with GTP-bound ROPs. ICR1 knockdown or silencing leads to cell deformation and loss of root stem-cell population. Ectopic expression of ICR1 phenocopies activated ROPs, inducing cell deformation of leaf-epidermis-pavement and root-hair cells [3, 5, 6, 9]. ICR1 is comprised of coiled-coil domains and forms complexes with itself and the exocyst vesicle-tethering complex subunit SEC3 [10-13]. The ICR1-SEC3 complexes can interact with ROPs in vivo. Plants overexpressing a ROP- and SEC3-noninteracting ICR1 mutant have a wild-type phenotype. Taken together, our results show that ICR1 is a scaffold-mediating formation of protein complexes that are required for cell polarity, linking ROP/RAC GTPases with vesicle trafficking and differentiation.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Transporte/fisiologia , Polaridade Celular , Proteínas de Ligação ao GTP/metabolismo , Meristema/metabolismo , Vesículas Transportadoras/fisiologia , Proteínas rac de Ligação ao GTP/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Proteínas de Fluorescência Verde/análise , Meristema/citologia , Mutação , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo
3.
Mol Cell Biol ; 27(6): 2144-54, 2007 03.
Artigo em Inglês | MEDLINE | ID: mdl-17242203

RESUMO

ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane by virtue of posttranslational lipid modifications. The relationship between ROP activation status and membrane localization has not been established. Here we demonstrate that endogenous ROPs, as well as a transgenic His(6)-green fluorescent protein (GFP)-AtROP6 fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, an activated His(6)-GFP-Atrop6(CA) mutant protein accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPgammaS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 isoforms were purified from Arabidopsis plants, and their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids. The acyl lipids were identified as palmitic and stearic acids. In agreement, activated His(6)-GFP-Atrop6(CA)mS(156) in which cysteine(156) was mutated into serine accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6 and possibly other ROPs are transiently S acylated, which induces their partitioning into detergent-resistant membranes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Membrana Celular/enzimologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Acilação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Membrana Celular/efeitos dos fármacos , Detergentes/farmacologia , Ativação Enzimática , Cromatografia Gasosa-Espectrometria de Massas , Metabolismo dos Lipídeos , Lipídeos/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/isolamento & purificação , Mutação/genética , Plantas Geneticamente Modificadas , Plasmídeos/genética , Ligação Proteica , Prenilação de Proteína , Proteínas rho de Ligação ao GTP/genética
4.
Mol Cell Biol ; 37(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28894027

RESUMO

ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relationships between ROP activation status and membrane localization has not been established. Here, we show that endogenous ROPs, as well as a transgenic His6-green fluorescent protein (GFP)-Arabidopsis thaliana ROP6 (AtROP6) fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, the His6-GFP-Atrop6CA activated mutant accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPγS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 proteins were purified from Arabidopsis plants, and in turn, their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, the wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids, identified as palmitic and stearic acids. Consistently, activated His6-GFP-Atrop6CAmS156, in which C156 was mutated into serine, accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6, and possibly other ROPs, are transiently S-acylated, inducing their partitioning into detergent-resistant membranes.

6.
Curr Biol ; 20(10): 914-20, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20451389

RESUMO

Rho GTPases are master regulators of cell polarity. For their function, Rhos must associate with discrete plasma membrane domains. Rho of Plants (ROPs) or RACs comprise a single family. Prenylation and S-acylation of hypervariable domain cysteines of Ras and Rho GTPases are required for their function; however, lipid modifications in the G domain have never been reported. Reversible S-acylation involves the attachment of palmitate (C16:0) or other saturated lipids to cysteines through a thioester linkage and was implicated in the regulation of signaling. Here we show that transient S-acylation of Arabidopsis AtROP6 takes place on two conserved G domain cysteine residues, C21 and C156. C21 is relatively exposed and is accessible for modification, but C156 is not, implying that its S-acylation involves a conformational change. Fluorescence recovery after photobleaching beam-size analysis shows that S-acylation of AtROP6 regulates its membrane-association dynamics, and detergent-solubilization studies indicate that it regulates AtROP6 association with lipid rafts. Site-specific acylation-deficient AtROP6 mutants can bind and hydrolyze GTP but display compromised effects on polar cell growth, endocytic uptake of the tracer dye FM4-64, and distribution of reactive oxygen species. These data reveal an S-acylation switch that regulates Rho signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Polaridade Celular , Cisteína/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia , Acilação , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/química , Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Ácido Palmítico/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ácidos Esteáricos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA