Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674984

RESUMO

Organic polymers are widely explored due to their high stability, scalability, and more facile modification properties. We developed cost-effective dithiocarbamate-based organic polymers synthesized using diamides, carbon disulfide, and diamines to apply for environmental remediation. The sequestration of radioiodine is a serious concern to tackle when dealing with nuclear power for energy requirements. However, many of the current sorbents have the problem of slower adsorption for removing iodine. In this report, we discuss the utilization of an electron-rich dithiocarbamate-based organic polymer for the removal of iodine in a very short time and with high uptake. Our material showed 2.8 g/g uptake of vapor iodine in 1 h, 915.19 mg/g uptake of iodine from cyclohexane within 5 s, 93% removal of saturated iodine from water in 1 min, and 1250 mg/g uptake of triiodide ions from water within 30 s. To the best of our knowledge, the iodine capture was faster than previously observed for any existing material. The material was fully recyclable when applied for up to four cycles. Hence, this dithiocarbamate-based polymer can be a promising system for the fast removal of various forms of iodine and, thus, enhance environmental security.


Assuntos
Iodo , Polímeros , Água , Radioisótopos do Iodo , Solventes
2.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684347

RESUMO

A modular platform for the synthesis of tunable aza-oxa-based macrocycles was established. Modulations in the backbone and the side-chain functional groups have been rendered to achieve the tunable property. These aza-oxa-based macrocycles can also differ in the number of heteroatoms in the backbone and the ring size of the macrocycles. For the proof of concept, a library of macrocycles was synthesized with various hanging functional groups, different combinations of heteroatoms, and ring sizes in the range of 17-27 atoms and was characterized by NMR and mass spectrometry. In light of the importance of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and the significance of triazole groups for various applications, we employed the click-reaction-based macrocyclization. The competence of the synthesized macrocycles in various biomedical applications was proven by studying the interactions with the serum albumin proteins; bovine serum albumin and human serum albumin. It was observed that some candidates, based on their hanging functional groups and specific backbone atoms, could interact well with the protein, thus improving the bioactive properties. On the whole, this work is a proof-of-concept to explore the backbone- and side-chain-tunable macrocycle for different properties and applications.


Assuntos
Química Click , Triazóis , Alcinos/química , Azidas/química , Catálise , Cobre/química , Humanos , Soroalbumina Bovina , Triazóis/química
3.
Chem Phys Lett ; 763: 138193, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33223560

RESUMO

The emerging paradigm shift from 'one molecule, one target, for one disease' towards 'multi-targeted small molecules' has paved an ingenious pathway in drug discovery in recent years. We extracted this idea for the investigation of drugs for COVID-19. Perceiving the importance of organosulfur compounds, seventy-six known organosulfur compounds were screened and studied for the interaction with multiple SARS-CoV-2 target proteins by molecular dynamics simulation. Lurasidone and its derivatives displayed substantial binding affinity against five proteins (Mpro, PLpro, Spro, helicase and RdRp). The pharmacokinetics, ADMET properties and target prediction studies performed in this work further potentiates the effectiveness against SARS-CoV-2.

4.
Proc Natl Acad Sci U S A ; 113(19): 5233-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27091962

RESUMO

DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.


Assuntos
Condutometria/instrumentação , DNA/genética , Nanoporos/ultraestrutura , Nucleotídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência de DNA/instrumentação , Sequência de Bases , Sistemas Computacionais , DNA/química , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polímeros/química , Análise de Sequência de DNA/métodos , Coloração e Rotulagem/métodos
5.
Proc Natl Acad Sci U S A ; 113(44): E6749-E6756, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729524

RESUMO

Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin-polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform.


Assuntos
Eletrodos , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Replicação do DNA , DNA Polimerase Dirigida por DNA , Desenho de Equipamento , Modelos Moleculares , Nucleotídeos/análise , Nucleotídeos/química , Polímeros/química , Porinas/metabolismo
6.
Langmuir ; 31(20): 5554-70, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25521719

RESUMO

Supramolecular assemblies that help to preorganize reactant molecules have played an important role in the development of concepts related to the control of excited-state processes. This has led to a persistent search for newer supramolecular systems (hosts), and this review briefly presents our work with octa acid (OA) to a host to control excited-state processes of organic molecules. Octa acid, a water-soluble host, forms 1:1, 2:1, and 2:2 (host-guest) complexes with various organic molecules. A majority of the guest molecules are enclosed within a capsule made up of two molecules of OA whereas OA by itself remains as a monomer or aggregates. Luminescence and (1)H NMR spectroscopy help to characterize the structure and dynamics of these host-guest complexes. The guest molecule as well as the host-guest complex as a whole undergoes various types of motion, suggesting that the guests possess freedom inside the confined space of the octa acid capsule. In addition, the confined guests are not isolated but are able to communicate (energy, electron, and spin) with molecules present closer to the capsule. The host-guest complexes are stable even on solid surfaces such as silica, clay, α-Zr phosphate, TiO2, and gold nanoparticles. This opens up new opportunities to explore the interaction between confined guests and active surfaces of TiO2 and gold nanoparticles. In addition, this allows the possibility of performing energy and electron transfer between organic molecules that do not adsorb on inert surfaces of silica, clay, or α-Zr phosphate. The results summarized here, in addition to providing a fundamental understanding of the behavior of molecules in a confined space provided by the host OA, are likely to have a long-range effect on the capture and release of solar energy.


Assuntos
Ácidos Carbocíclicos/química , Modelos Cardiovasculares , Processos Fotoquímicos
7.
J Am Chem Soc ; 136(38): 13162-5, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25204618

RESUMO

Biological systems have long recognized the importance of macromolecular diversity and have evolved efficient processes for the rapid synthesis of sequence-defined biopolymers. However, achieving sequence control via synthetic methods has proven to be a difficult challenge. Herein we describe efforts to circumvent this difficulty via the use of orthogonal allyl acrylamide building blocks and a liquid-phase fluorous support for the de novo design and synthesis of sequence-specific polymers. We demonstrate proof-of-concept via synthesis and characterization of two sequence-isomeric 10-mer polymers. (1)H NMR and LCMS were used to confirm their chemical structure while tandem MS was used to confirm sequence identity. Further validation of this methodology was provided via the successful synthesis of a sequence-specific 16-mer polymer incorporating nine different monomers. This strategy thus shows promise as an efficient approach for the assembly of sequence-specific functional polymers.


Assuntos
Acrilamida/química , Compostos Alílicos/química , Polímeros/síntese química , Acrilamida/síntese química , Compostos Alílicos/síntese química , Halogenação , Modelos Moleculares , Polímeros/química , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química
8.
Photochem Photobiol Sci ; 13(2): 310-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24258304

RESUMO

The phototransformation of benzimidazole (BZ) and of the benzimidazole pesticide thiabendazole (TBZ) was investigated in aqueous solution in the absence and presence of the supramolecular host cucurbit[8]uril (CB8). ESI-MS and NMR reveal that both compounds form stable 1 : 2 host-guest complexes with CB8 (BZ2@CB8, TBZ2@CB8). The phototransformation of free BZ leads to dehydrodimerization, while for TBZ the photoreactivity leads to BZ, benzimidazole-2-carboximide and 2-acetylbenzimidazole. Inside CB8, BZ undergoes photohydrolysis to form 2-aminoformanilide, while for TBZ2@CB8 additional photoproducts were observed which are pH dependent. At pH 1.2 photolysis of TBZ2@CB8 leads to new red-shifted photoproducts with extended π conjugation.

9.
ACS Macro Lett ; 13(1): 65-72, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165126

RESUMO

Sequence-defined oligomers (SDOs) with their unique monomeric sequence and customizable nature are attracting the attention of researchers globally. The structural and functional diversity attainable in SDOs makes this platform promising, albeit with challenges in the synthesis. Herein, we report the design and synthesis of a novel class of SDO by incorporating tertiary amines into the backbone from commercially available inexpensive materials. Tertiary amines were selected due to their various material and biomedical applications. Even though the synthesis and purification of amine compounds are challenging, their various significant applications, such as pharmaceuticals, catalysts, surfactants, corrosion inhibitors, dye intermediates, polymer additives, rubber accelerators, gas treating agents, agriculture, and analytical chemistry, make them fascinating. The synthetic strategy that is designed here is extremely efficient and economical for the scalable synthesis of the SDO and is support-free, protection-deprotection chemistry-free, and catalyst/template-free. Most importantly, no extra design and synthesis of the monomer is required here. The key reactions employed for the SDO synthesis are (i) transformation of the hydroxy group to a halide and (ii) substitution of the halide by the secondary amine units. Including the purifying processes, the multigram synthesis of 4-mer was completed in 12-14 h. The synthetic strategy was established by synthesizing two different sequences of SDOs. The SDOs are characterized by 1H NMR and LC-MS. The tandem MS (MS/MS) experiment was conducted in order to validate the sequences over the SDO chain. Furthermore, the SDO platform was advanced in two ways: (i) by increasing the chain length via attaching a linker, which provides a rapid method for increasing the tertiary amine over the SDO chain, and (ii) postsynthetic modification of SDO with other functional groups, including guanidine for biological importance and a well-known fluorophore dansyl group for material significance.

10.
Photochem Photobiol ; 100(4): 980-988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419115

RESUMO

Developing multifunctional nanomaterials with distinct photochemical properties, such as high quantum yield, improved photostability, and good biocompatibility is critical for a wide range of biomedical applications. Motivated by this, we designed and synthesized a dansyl-tagged xanthate-based capping agent (DX) for the synthesis of fluorescent silver nanoparticles (AgNPs). The capping agent DX was characterized by 1H and 13C-NMR, LC-MS, and FT-IR. The synthesized DX-capped fluorescent AgNPs were thoroughly characterized by UV-visible spectroscopy, fluorescence spectroscopy, field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), and zeta potential. The fluorescent AgNPs showed distinct surface plasmon resonance absorption at λmax = 414 nm, fluorescence at λmax = 498 nm, quantum yield = 0.24, zeta potential = +18.6 mV, average size = 18.2 nm. Furthermore, the biological activity of the fluorescent AgNPs was validated by its interaction with the most abundant protein in the blood, that is, BSA (Bovine serum albumin) and HSA (Human serum albumin) with binding constant of 2.34 × 104 M-1 and 2.14 × 104 M-1 respectively. Interestingly, fluorescence resonance energy transfer (FRET) was observed between the fluorescent AgNPs and BSA/HSA with a FRET efficiency of 77.23% and 56.36%, respectively, indicating strong interaction between fluorescent AgNPs and BSA/HSA.


Assuntos
Nanopartículas Metálicas , Albumina Sérica , Prata , Prata/química , Nanopartículas Metálicas/química , Albumina Sérica/química , Humanos , Ésteres/química , Compostos de Dansil/química , Ligação Proteica , Corantes Fluorescentes/química , Soroalbumina Bovina/química , Espectrometria de Fluorescência
11.
ACS Appl Bio Mater ; 7(7): 4654-4663, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867502

RESUMO

The 5-nitroimidazole (5-NI) class of antibiotics, such as metronidazole, ornidazole, secnidazole, and tinidazole, are widely used to prevent bacterial infection in humans and livestock industries. However, their overuse contaminates the farmed animal products and water bodies. Hence, a selective, sensitive, and cost-effective method to detect 5-NI antibiotics is the need of the hour. Herein, we report a rapid, inexpensive, and efficient sensing system to detect 5-NI drugs using an as-prepared solution of ε-poly-l-lysine (ε-PL), a naturally occurring and biodegradable homopolypeptide that has an intrinsic fluorescence via clustering-triggered emission. The low nanomolar detection limit (3.25-3.97 nM) for the aforementioned representative 5-NI drugs highlights the sensitivity of the system, outperforming most of the reported sensors alike. The resulting fluorescence quenching was found to be static in nature. Importantly, excellent recovery (100.26-104.41%) was obtained for all real samples and animal products tested. Visual detection was demonstrated by using paper strips and silica gel for practical applications. Furthermore, ε-PL could detect 5-NI antibiotics in living 3T3-L1 mouse fibroblast cells via cellular imaging. Taken together, the present work demonstrates the detection of 5-NI antibiotics using a biocompatible natural polypeptide, ε-PL, and represents a simple and inexpensive analytical tool for practical application.


Assuntos
Antibacterianos , Nitroimidazóis , Polilisina , Animais , Polilisina/química , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/análise , Camundongos , Nitroimidazóis/química , Nitroimidazóis/análise , Materiais Biocompatíveis/química , Teste de Materiais , Tamanho da Partícula , Fluorescência , Estrutura Molecular , Peptídeos/química , Corantes Fluorescentes/química , Imagem Óptica , Sobrevivência Celular/efeitos dos fármacos
12.
RSC Adv ; 13(51): 35791-35798, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38074407

RESUMO

This work presents a fluorescent sequence-defined oligo dithiocarbamate platform with a dansyl appendage for interaction studies with a range of proteins including BSA, HSA, proteinase, trypsin, lysozyme, hemoglobin, and amylase. The platform involves six distinct sequence-defined oligomers (SDOs), each offering varied functionalities - dithiocarbamate (DTC), ester, and amide - within the backbone and side chains; different architectures (linear and branched); and introduction of polar or non-polar groups. Fluorescence titration experiments and molecular docking were used to explore the interaction between the synthesized SDOs and the listed proteins. This analysis identified two promising candidates, particularly SDOs 1 and 2, based on higher FRET efficiency, indicating a stronger interaction with serum albumins. SDO 1, demonstrating the highest FRET, was utilized for specific and sensitive staining of serum albumin in native-polyacrylamide gel electrophoresis (Native-PAGE), providing selective fluorescent staining with a 25 times lower concentration of staining agent compared to conventional Coomassie blue staining. This innovative approach serves as an alternative tool for gel staining, especially for selective fluorescent staining of BSA and HSA.

13.
Chem Commun (Camb) ; 59(48): 7399-7402, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37232580

RESUMO

A novel dansyl-triazole-based fluorescent macrocycle with high Stokes shift and positive solvatochromism was developed. This is an excellent fluorescence sensor for selective detection of nitro-containing antibiotics and other nitro-heteroaromatics. Detection was possible in real samples/paper strips in submicromolar concentration. The interaction of the macrocycle with multiple proteins exhibited its bioactivity.


Assuntos
Corantes Fluorescentes , Triazóis , Espectrometria de Fluorescência , Limite de Detecção
14.
J Am Chem Soc ; 134(36): 14718-21, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22931120

RESUMO

Supramolecular photoinduced electron transfer dynamics between coumarin 153 (C153) and 4,4'-dimethyl viologen dichloride (MV(2+)) across the molecular barrier of a host molecule, octa acid (OA), has been investigated with femtosecond time resolution. The ultrafast electron transfer from C153 to MV(2+) followed excitation with 150 fs laser pulses at a wavelength of 390 nm despite the fact that C153 was incarcerated within an OA(2) capsule. As a result, the photoexcited coumarin did not show any of the typical relaxation dynamics that is usually observed in free solution. Instead, the excited electron was transferred across the molecular wall of the capsuleplex within 20 ps. Likewise, the lifetime of the charge transfer state was short (724 ps), and electron back-transfer reestablished the ground state of the system within 1 ns, showing strong electronic coupling among the excited electron donor, host, and acceptor. When the donor was encapsulated into the host molecule, the electron transfer process showed significantly accelerated dynamics and essentially no solvent relaxation compared with that in free solution. The study was also extended to N-methylpyridinium iodide as the acceptor with similar results.


Assuntos
Cumarínicos/química , Compostos de Piridínio/química , Viologênios/química , Transporte de Elétrons , Estrutura Molecular , Processos Fotoquímicos , Soluções , Água/química
15.
Langmuir ; 28(1): 10-6, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22106849

RESUMO

Synthesis and encapsulation properties of two new water-soluble resorcinol-capped organic cavitands (tetra acid and octa acid; RTA and ROA) are reported in this Letter. Organic guest molecules template the formation of capsular assembly of the above cavitands in water. Depending upon the guest, either 1:2 (guest to host) or 2:2 capsular assemblies were formed. The excited state properties of guests such as anthracene, camphorthione, and 4,4'-dimethyl benzil were distinctly different within a capsular assembly from those when they were free in a solution. Importantly, the host-guest complexes of the above two hosts (RTA and ROA) as well as octa acid (OA) could be transferred to a silica surface. The excited state behavior of host-guest assemblies on silica surface resembled that in solution. The high cage effect in the decarbonylation products and high yield of rearrangement product obtained upon photolysis of 1-phenyl-3-tolyl-2-propanone included within RTA, ROA, and OA both in solution and on silica surface supported the conclusion that capsular assemblies of these hosts are stable on silica surface.

16.
Langmuir ; 28(7): 3355-9, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22303867

RESUMO

Coumarins C-153, C-480, and C-1 formed 1:2 (guest:host) complexes with a water-soluble cavitand having eight carboxylic acid groups (OA) in aqueous borate buffer solution. The complexes were photoexcited in the presence of electron acceptors (methyl viologen, MV(2+), or TiO(2)) to probe the possibility of electron transfer between a donor and an acceptor physically separated by a molecular wall. In solution at basic pH, the dication MV(2+) was associated to the exterior of the complex C-153@OA(2), as suggested by diffusion constants (~1.2 × 10(-6) cm(2)/s) determined by DOSY NMR. The fluorescence of C-153@OA(2) was quenched in the presence of increasing amounts of MV(2+) and Stern-Volmer plots of I(o)/I and τ(o)/τ vs [MV(2+)] indicated that the quenching was static. As per FT-IR-ATR spectra, the capsule C-153@OA(2) was bound to TiO(2) nanoparticle films. Selective excitation (λ(exc) = 420) of the above bound complex resulted in fluorescence quenching. When adsorbed on insulating ZrO(2) nanoparticle films, excitation of the complex resulted in a broad fluorescence spectrum centered at 500 nm and consistent with C-153 being within the lipophilic capsule interior. Consistent with the above results, colloidal TiO(2) quenched the emission while colloidal ZrO(2) did not.


Assuntos
Cumarínicos/química , Transporte de Elétrons , Paraquat/química , Processos Fotoquímicos , Titânio/química , Coloides , Corantes , Fluorescência
17.
Sci Rep ; 12(1): 4815, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314752

RESUMO

The design and synthesis of a versatile class of macrocycles with tunable functional groups and ring size are unfolded. Herein, a synthetic strategy is reported to furnish a new class of macrocycles in multi-gram scale in a two-step reaction. The total time taken for synthesizing a macrocycle is 1.5 h. Dithiocarbamates, an important functional group in biomedical and material sciences, is strategically incorporated in the macrocyclic backbone without metal for the first time. It is noteworthy that when state-of-the-art macrocycle synthesis is in millimolar concentration, this work employs the reaction in molar concentration (0.2-0.4 M). As proof-of-principle, a library of macrocycles was synthesized, varying the functional groups and ring size. The physicochemical properties of macrocycles revealed their druggable nature and are affirmed by protein (serum albumin) interaction study theoretically and experimentally. Diverse functional groups and ring sizes of macrocycles brought about twenty-five-fold difference in binding constant with the model protein.


Assuntos
Compostos Macrocíclicos , Compostos Macrocíclicos/química , Proteínas
18.
Langmuir ; 27(17): 10548-55, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21749113

RESUMO

Communication between two molecules, one confined and excited (triplet or singlet) and one free and paramagnetic, has been explored through quenching of fluorescence and/or phosphorescence by nitroxides as paramagnetic radical species. Quenching of excited states by nitroxides has been investigated in solution, and the mechanism is speculated to involve charge transfer and/or exchange processes, both of which require close orbital interaction between excited molecule and quencher. We show in this report that such a quenching, which involves electron-electron spin communication, can occur even when there is a molecular wall between the two. The excited state molecule is confined within an organic capsule made up of two molecules of a deep cavity cavitand, octa acid, that exists in the anionic form in basic aqueous solution. The nitroxide is kept free in aqueous solution. (1)H NMR and EPR experiments were carried out to ascertain the location of the two molecules. The distance between the excited molecule and the paramagnetic quencher was manipulated by the use of cationic, anionic, and neutral nitroxide and also by selectively including the cationic nitroxide within the cavity of cucurbituril. Results presented here highlight the role of the lifetime of the encounter complex in electron-electron spin communication when the direct orbital overlap between the two molecules is prevented by the intermediary wall.


Assuntos
Óxidos de Nitrogênio/química , Elétrons , Estrutura Molecular , Soluções , Estereoisomerismo , Água/química
19.
Langmuir ; 26(10): 6943-53, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20055365

RESUMO

With the help of (1)H NMR and EPR techniques, we have probed the dynamics of guest molecules included within a water-soluble deep cavity cavitand known by the trivial name octa acid. All guest molecules investigated here form 2:1 (host/guest) complexes in water, and two host molecules encapsulate the guest molecule by forming a closed capsule. We have probed the dynamics of the guest molecule within this closed container through (1)H NMR and EPR techniques. The timescales offered by these two techniques are quite different, millisecond and nanosecond, respectively. For EPR studies, paramagnetic nitroxide guest molecules and for (1)H NMR studies, a wide variety of structurally diverse neutral organic guest molecules were employed. The guest molecules freely rotate along their x axis (long molecular axis and magnetic axis) on the NMR timescale; however, their rotation is slowed with respect to that in water on the EPR timescale. Rotation along the x axis is dependent on the length of the alkyl chain attached to the nitroxide probe. Overall rotation along the y or z axis was very much dependent on the structure of the guest molecule. The guests investigated could be classified into three groups: (a) those that do not rotate along the y or z axis both at room and elevated (55 degrees C) temperatures, (b) those that rotate freely at room temperature, and (c) those that do not rotate at room temperature but do so at higher temperatures. One should note that rotation here refers to the NMR timescale and it is quite possible that all molecules may rotate at much longer timescales than the one probed here. A slight variation in structure alters the rotational mobility of the guest molecules.


Assuntos
Ácidos Graxos Insaturados/química , Rotação , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Solubilidade , Propriedades de Superfície , Água/química
20.
Langmuir ; 25(24): 13820-32, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20560551

RESUMO

Supramolecular complexation behavior of cucurbiturils with paramagnetic nitroxide spin probes was examined by (1)H NMR, X-ray diffraction studies of crystals, computation, and EPR. Both cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) form a 1:1 complex with 4-(N,N,N-trimethylammonium)-2,2,6,6-tetramethylpiperidinyl-N-oxy bromide (CAT1). The structure of the complex in the solid state was inferred by X-ray diffraction studies and in the gas phase by computation (B3LYP/6-31G(d)). Whereas ESI-MS data provided evidence for the existence of the complex in solution, indirect evidence was obtained through (1)H NMR studies with a structural diamagnetic analogue, 4-(N,N,N-trimethylammonium)-2,2,6,6-tetramethyl-N-methylpiperidine iodide (DCAT1). The EPR spectrum of the CAT1@CB7 complex consisting of three lines suggested that probe CAT1 is associated with host CB7 such that the nitroxide part is exposed to water. The spectral pattern was independent of the concentration of the complex and the presence of salt such as NaCl. The most interesting observation was made with CB8 as the host. In this case, in addition to the expected three-line spectrum, an additional spectrum consisting of seven lines was recorded. The contribution of the seven-line spectrum to the total spectrum was dependent on the concentration of the complex and added salt (NaCl) to the aqueous solution. The coupling constant for the seven-line spectrum for (14)N-substituted CAT1 is 5 G, and that for the four-line spectrum for (15)N-substituted CAT1 is 7.15 G. The only manner by which we could reproduce the observed spectra by simulation for both (14)N- and (15)N-substituted CAT1@CB8 was by assuming a spin exchange among three nitroxide radicals. To account for this observation, we hypothesize that three CAT1 molecules included within CB8 interact in such a way that there is an association of three supramolecules of CAT1@CB8 (i.e., [CAT1@CB8](3)) in a triangular geometry that leads to spin exchange between the three radical centers. We have established, with the help of 13 additional examples, that this is a general phenomenon. We are in the process of understanding this unusual phenomenon.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imidazóis/química , Substâncias Macromoleculares/química , Óxidos de Nitrogênio/química , Piperidinas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA