Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 567(7747): 204-208, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30867608

RESUMO

Questioning basic assumptions about the structure of space and time has greatly enhanced our understanding of nature. State-of-the-art atomic clocks1-3 make it possible to precisely test fundamental symmetry properties of spacetime and search for physics beyond the standard model at low energies of just a few electronvolts4. Modern tests of Einstein's theory of relativity try to measure so-far-undetected violations of Lorentz symmetry5; accurately comparing the frequencies of optical clocks is a promising route to further improving such tests6. Here we experimentally demonstrate agreement between two single-ion optical clocks at the 10-18 level, directly validating their uncertainty budgets, over a six-month comparison period. The ytterbium ions of the two clocks are confined in separate ion traps with quantization axes aligned along non-parallel directions. Hypothetical Lorentz symmetry violations5-7 would lead to periodic modulations of the frequency offset as the Earth rotates and orbits the Sun. From the absence of such modulations at the 10-19 level we deduce stringent limits of the order of 10-21 on Lorentz symmetry violation parameters for electrons, improving previous limits8-10 by two orders of magnitude. Such levels of precision will be essential for low-energy tests of future quantum gravity theories describing dynamics at the Planck scale4, which are expected to predict the magnitude of residual symmetry violations.

2.
Phys Rev Lett ; 129(24): 245001, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563261

RESUMO

One of the most enduring and intensively studied problems of x-ray astronomy is the disagreement of state-of-the art theory and observations for the intensity ratio of two Fe XVII transitions of crucial value for plasma diagnostics, dubbed 3C and 3D. We unravel this conundrum at the PETRA III synchrotron facility by increasing the resolving power 2.5 times and the signal-to-noise ratio thousandfold compared with our previous work. The Lorentzian wings had hitherto been indistinguishable from the background and were thus not modeled, resulting in a biased line-strength estimation. The present experimental oscillator-strength ratio R_{exp}=f_{3C}/f_{3D}=3.51(2)_{stat}(7)_{sys} agrees with our state-of-the-art calculation of R_{th}=3.55(2), as well as with some previous theoretical predictions. To further rule out any uncertainties associated with the measured ratio, we also determined the individual natural linewidths and oscillator strengths of 3C and 3D transitions, which also agree well with the theory. This finally resolves the decades-old mystery of Fe XVII oscillator strengths.

3.
Phys Rev Lett ; 125(7): 073001, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857542

RESUMO

Two lowest-energy odd-parity atomic levels of actinium, 7s^{2}7p^{2}P_{1/2}^{o}, 7s^{2}7p^{2}P_{3/2}^{o}, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm^{-1}. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to ^{2}P_{3/2}^{o}. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficient laser cooling and ionization schemes for actinium, with possible applications for high-purity medical-isotope production and future fundamental physics experiments.

4.
Phys Rev Lett ; 124(22): 225001, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567918

RESUMO

For more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic 2p-3d transitions, 3C and 3D, in Fe XVII ions found oscillator strength ratios f(3C)/f(3D) disagreeing with theory, but uncertainties had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA III, and reach, at a millionfold lower photon intensities, a 10 times higher spectral resolution, and 3 times smaller uncertainty than earlier work. Our final result of f(3C)/f(3D)=3.09(8)(6) supports many of the earlier clean astrophysical and laboratory observations, while departing by five sigmas from our own newest large-scale ab initio calculations, and excluding all proposed explanations, including those invoking nonlinear effects and population transfers.

5.
Phys Rev Lett ; 120(17): 173001, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29756836

RESUMO

We propose a new frequency standard based on a 4f^{14}6s6p ^{3}P_{0}-4f^{13}6s^{2}5d (J=2) transition in neutral Yb. This transition has a potential for high stability and accuracy and the advantage of the highest sensitivity among atomic clocks to variation of the fine-structure constant α. We find its dimensionless α-variation enhancement factor to be K=-15, in comparison to the most sensitive current clock (Yb^{+} E3, K=-6), and it is 18 times larger than in any neutral-atomic clocks (Hg, K=0.8). Combined with the unprecedented stability of an optical lattice clock for neutral atoms, this high sensitivity opens new perspectives for searches for ultralight dark matter and for tests of theories beyond the standard model of elementary particles. Moreover, together with the well-established ^{1}S_{0}-^{3}P_{0} transition, one will have two clock transitions operating in neutral Yb, whose interleaved interrogations may further reduce systematic uncertainties of such clock-comparison experiments.

6.
Nat Commun ; 15(1): 5663, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969633

RESUMO

Optical atomic clocks are the most accurate and precise measurement devices of any kind, enabling advances in international timekeeping, Earth science, fundamental physics, and more. However, there is a fundamental tradeoff between accuracy and precision, where higher precision is achieved by using more atoms, but this comes at the cost of larger interactions between the atoms that limit the accuracy. Here, we propose a many-ion optical atomic clock based on three-dimensional Coulomb crystals of order one thousand Sn2+ ions confined in a linear RF Paul trap with the potential to overcome this limitation. Sn2+ has a unique combination of features that is not available in previously considered ions: a 1S0 ↔ 3P0 clock transition between two states with zero electronic and nuclear angular momentum (I = J = F = 0) making it immune to nonscalar perturbations, a negative differential polarizability making it possible to operate the trap in a manner such that the two dominant shifts for three-dimensional ion crystals cancel each other, and a laser-accessible transition suitable for direct laser cooling and state readout. We present calculations of the differential polarizability, other relevant atomic properties, and the motion of ions in large Coulomb crystals, in order to estimate the achievable accuracy and precision of Sn2+ Coulomb-crystal clocks.

7.
Phys Rev Lett ; 94(1): 013001, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698075

RESUMO

Heavy polar molecules offer a great sensitivity to the electron electric dipole moment (EDM). To guide emerging searches for EDMs with molecular ions, we estimate the EDM-induced energy corrections for hydrogen halide ions HBr(+) and HI(+) in their respective ground X (2)Pi(3/2) states. We find that the energy corrections due to EDM for the two ions differ by an unexpectedly large factor of 15. We demonstrate that a major part of this enhancement is due to a dissimilarity in the nature of the chemical bond for the two ions: the bond that is nearly of ionic character in HBr(+) exhibits predominantly a covalent nature in HI(+). We conclude that because of this enhancement the HI(+) ion may be a potentially competitive candidate for the EDM search.

8.
Phys Rev Lett ; 90(6): 063002, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12633291

RESUMO

Ultracold collisions of spin-polarized 24Mg, 40Ca, and 88Sr in the metastable 3P2 excited state are investigated based on molecular potentials obtained from ab initio calculations. We calculate the long-range interaction potentials and estimate the scattering length and the collisional loss rate as a function of magnetic field. The scattering lengths show resonance behavior due to the appearance of a molecular bound state in a purely long-range interaction potential and are positive for magnetic fields below 50 mT. A loss-rate model shows that losses should be smallest near zero magnetic field and for fields slightly larger than the resonance field, where the scattering length is also positive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA