Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39233506

RESUMO

Bacterial cell division is orchestrated by proteins that assemble in dynamic complexes collectively known as the divisome. Essential monofunctional enzymes with glycosyltransferase or transpeptidase (TPase) activities, FtsW and FtsI respectively, engage in the synthesis of septal peptidoglycan (sPG). Enigmatically, Salmonella has two TPases that can promote cell division independently: FtsI (PBP3) and the pathogen-specific paralogue PBP3SAL. How Salmonella regulates the assembly of the sPG synthase complex with these two TPases, is unknown. Here, we characterized Salmonella division complexes in wild-type cells and isogenic mutants lacking PBP3 or PBP3SAL. The complexes were cross-linked in vivo and pulled down with antibodies recognizing each enzyme. Proteomics of the immunoprecipitates showed that PBP3 and PBP3SAL do not extensively cross-link in wild type cells, supporting the presence of independent complexes. More than 40 proteins cross-link in complexes in which these two TPases are present. Those identified with high scores include FtsA, FtsK, FtsQLB, FtsW, PBP1B, SPOR domain-containing proteins (FtsN, DedD, RlpA, DamX), amidase activators (FtsX, EnvC, NlpD) and Tol-Pal proteins. Other cross-linked proteins are the protease Prc, the elongasome TPase PBP2 and, D,D-endo- and D,D-carboxypeptidases. PBP3 and PBP3SAL localize at midcell and compete for occupying the division complex in response to environmental cues. Thus, a catalytic-dead PBP3SAL-S300A variant impairs cell division in a high osmolarity and acidic condition in which it is produced at levels exceeding those of PBP3. Salmonella may therefore exploit an 'adjustable' divisome to exchange TPases for ensuring cell division in distinct environments and, in this manner, expand its colonization capacities.

2.
Environ Microbiol ; 26(4): e16621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558504

RESUMO

The Candidate Phyla Radiation (CPR) encompasses widespread uncultivated bacteria with reduced genomes and limited metabolic capacities. Most CPR bacteria lack the minimal set of enzymes required for peptidoglycan (PG) synthesis, leaving it unclear how these bacteria produce this essential envelope component. In this study, we analysed the distribution of d-amino acid racemases that produce the universal PG components d-glutamate (d-Glu) or d-alanine (d-Ala). We also examined moonlighting enzymes that synthesize d-Glu or d-Ala. Unlike other phyla in the domain Bacteria, CPR bacteria do not exhibit these moonlighting activities and have, at most, one gene encoding either a Glu or Ala racemase. One of these 'orphan' racemases is a predicted Glu racemase (MurICPR) from the CPR bacterium Candidatus Saccharimonas aalborgenesis. The expression of MurICPR restores the growth of a Salmonella d-Glu auxotroph lacking its endogenous racemase and results in the substitution of l-Ala by serine as the first residue in a fraction of the PG stem peptides. In vitro, MurICPR exclusively racemizes Glu as a substrate. Therefore, Ca. Saccharimonas aalborgensis may couple Glu racemization to serine and d-Glu incorporation into the stem peptide. Our findings provide the first insights into the synthesis of PG by an uncultivated environmental bacterium and illustrate how to experimentally test enzymatic activities from CPR bacteria related to PG metabolism.


Assuntos
Isomerases de Aminoácido , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Racemases e Epimerases , Bactérias/metabolismo , Ácido Glutâmico/metabolismo , Serina
3.
PLoS Pathog ; 18(3): e1010213, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35275969

RESUMO

The general stress response (GSR) in Listeria monocytogenes plays a critical role in the survival of this pathogen in the host gastrointestinal tract. The GSR is regulated by the alternative sigma factor B (σB), whose role in protection against acid stress is well established. Here, we investigated the involvement of the stressosome, a sensory hub, in transducing low pH signals to induce the GSR. Mild acid shock (15 min at pH 5.0) activated σB and conferred protection against a subsequent lethal pH challenge. A mutant strain where the stressosome subunit RsbR1 was solely present retained the ability to induce σB activity at pH 5.0. The role of stressosome phosphorylation in signal transduction was investigated by mutating the putative phosphorylation sites in the core stressosome proteins RsbR1 (rsbR1-T175A, -T209A, -T241A) and RsbS (rsbS-S56A), or the stressosome kinase RsbT (rsbT-N49A). The rsbS S56A and rsbT N49A mutations abolished the response to low pH. The rsbR1-T209A and rsbR1-T241A mutants displayed constitutive σB activity. Mild acid shock upregulates invasion genes inlAB and stimulates epithelial cell invasion, effects that were abolished in mutants with an inactive or overactive stressosome. Overall, the results show that the stressosome is required for acid-induced activation of σB in L. monocytogenes. Furthermore, they show that RsbR1 can function independently of its paralogues and signal transduction requires RsbT-mediated phosphorylation of RsbS on S56 and RsbR1 on T209 but not T175. These insights shed light on the mechanisms of signal transduction that activate the GSR in L. monocytogenes in response to acidic environments, and highlight the role this sensory process in the early stages of the infectious cycle.


Assuntos
Listeria monocytogenes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/metabolismo , Fosforilação , Fator sigma/genética , Fator sigma/metabolismo , Transdução de Sinais/fisiologia
4.
PLoS Pathog ; 18(1): e1010241, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077524

RESUMO

Salmonella enterica causes intracellular infections that can be limited to the intestine or spread to deeper tissues. In most cases, intracellular bacteria show moderate growth. How these bacteria face host defenses that recognize peptidoglycan, is poorly understood. Here, we report a high-resolution structural analysis of the minute amounts of peptidoglycan purified from S. enterica serovar Typhimurium (S. Typhimurium) infecting fibroblasts, a cell type in which this pathogen undergoes moderate growth and persists for days intracellularly. The peptidoglycan of these non-proliferating bacteria contains atypical crosslinked muropeptides with stem peptides trimmed at the L-alanine-D-glutamic acid-(γ) or D-glutamic acid-(γ)-meso-diaminopimelic acid motifs, both sensed by intracellular immune receptors. This peptidoglycan has a reduced glycan chain average length and ~30% increase in the L,D-crosslink, a type of bridge shared by all the atypical crosslinked muropeptides identified. The L,D-transpeptidases LdtD (YcbB) and LdtE (YnhG) are responsible for the formation of these L,D-bridges in the peptidoglycan of intracellular bacteria. We also identified in a fraction of muropeptides an unprecedented modification in the peptidoglycan of intracellular S. Typhimurium consisting of the amino alcohol alaninol replacing the terminal (fourth) D-alanine. Alaninol was still detectable in the peptidoglycan of a double mutant lacking LdtD and LdtE, thereby ruling out the contribution of these enzymes to this chemical modification. Remarkably, all multiple mutants tested lacking candidate enzymes that either trim stem peptides or form the L,D-bridges retain the capacity to modify the terminal D-alanine to alaninol and all attenuate NF-κB nuclear translocation. These data inferred a potential role of alaninol-containing muropeptides in attenuating pro-inflammatory signaling, which was confirmed with a synthetic tetrapeptide bearing such amino alcohol. We suggest that the modification of D-alanine to alaninol in the peptidoglycan of non-proliferating intracellular S. Typhimurium is an editing process exploited by this pathogen to evade immune recognition inside host cells.


Assuntos
Peptidoglicano/química , Peptidoglicano/imunologia , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Salmonella enterica/metabolismo , Linhagem Celular , Parede Celular/química , Parede Celular/imunologia , Parede Celular/metabolismo , Humanos , Tolerância Imunológica/imunologia , Peptidoglicano/metabolismo
5.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273334

RESUMO

Listeria pathogenicity island 1 (LIPI-1) is a genetic region containing a cluster of genes essential for virulence of the bacterial pathogen Listeria monocytogenes. Main virulence factors in LIPI-1 include long 5' untranslated regions (5'UTRs), among which is Rli51, a small RNA (sRNA) in the 5'UTR of the Zn-metalloprotease-coding mpl. So far, Rli51 function and molecular mechanisms have remained obscure. Here, we show that Rli51 exhibits a dual mechanism of regulation, functioning as a cis- and as a trans-acting sRNA. Under nutrient-rich conditions, rli51-mpl transcription is prematurely terminated, releasing a short 121-nucleotide-long sRNA. Rli51 is predicted to function as a transcription attenuator that can fold into either a terminator or a thermodynamically more stable antiterminator. We show that the sRNA Rli21/RliI binds to a single-stranded RNA loop in Rli51, which is essential to mediate premature transcription termination, suggesting that sRNA binding could stabilize the terminator fold. During intracellular infection, rli51 transcription is increased, which generates a higher abundance of the short Rli51 sRNA and allows for transcriptional read-through into mpl. Comparative intracellular bacterial transcriptomics in rli51-null mutants and the wild-type reference strain EGD-e suggests that Rli51 upregulates iron-scavenging proteins and downregulates virulence factors from LIPI-1. MS2 affinity purification confirmed that Rli51 binds transcripts of the heme-binding protein Lmo2186 and Lmo0937 in vivo. These results prove that Rli51 functions as a trans-acting sRNA in intracellular bacteria. Our research shows a growth condition-dependent mechanism of regulation for Rli51, preventing unintended mpl transcription in extracellular bacteria and regulating genes important for virulence in intracellular bacteria.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes , RNA Bacteriano , Pequeno RNA não Traduzido , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Ilhas Genômicas/genética , Transcrição Gênica , Regiões 5' não Traduzidas , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Humanos , Listeriose/microbiologia
6.
Gut ; 72(2): 345-359, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35428659

RESUMO

OBJECTIVE: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models. DESIGN: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation. RESULTS: Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment. CONCLUSION: Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Transição Epitelial-Mesenquimal/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Macrófagos/metabolismo , Aminoácido Oxirredutases/genética , Neoplasias Pancreáticas
7.
Infect Immun ; 91(6): e0057122, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125941

RESUMO

Listeria monocytogenes is a bacterial pathogen capable of causing severe infections but also thriving outside the host. To respond to different stress conditions, L. monocytogenes mainly utilizes the general stress response regulon, which largely is controlled by the alternative sigma factor Sigma B (SigB). In addition, SigB is important for virulence gene expression and infectivity. Upon encountering stress, a large multicomponent protein complex known as the stressosome becomes activated, ultimately leading to SigB activation. RsbX is a protein needed to reset a "stressed" stressosome and prevent unnecessary SigB activation in nonstressed conditions. Consequently, absence of RsbX leads to constitutive activation of SigB even without prevailing stress stimulus. To further examine the involvement of SigB in the virulence of this pathogen, we investigated whether a strain with constitutively active SigB would be affected in virulence factor expression and/or infectivity in cultured cells and in a chicken embryo infection model. Our results suggest that increased SigB activity does not substantially alter virulence gene expression compared with the wild-type (WT) strain at transcript and protein levels. Bacteria lacking RsbX were taken up by phagocytic and nonphagocytic cells at a similar frequency to WT bacteria, both in stressed and nonstressed conditions. Finally, the absence of RsbX only marginally affected the ability of bacteria to infect chicken embryos. Our results suggest only a minor role of RsbX in controlling virulence factor expression and infectivity under these conditions.


Assuntos
Listeria monocytogenes , Embrião de Galinha , Animais , Virulência , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fator sigma/genética , Regulação Bacteriana da Expressão Gênica
8.
Mol Microbiol ; 118(5): 477-493, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115022

RESUMO

Salmonella enterica serovar Typhimurium infects eukaryotic cells residing within membrane-bound phagosomes. In this compartment, the pathogen replaces the morphogenetic penicillin-binding proteins 2 and 3 (PBP2/PBP3) with PBP2SAL /PBP3SAL , two proteins absent in Escherichia coli. The basis for this switch is unknown. Here, we show that PBP3 protein levels drop drastically when S. Typhimurium senses acidity, high osmolarity and nutrient scarcity, cues that activate virulence functions required for intra-phagosomal survival and proliferation. The protease Prc and the transcriptional regulator OmpR contribute to lower PBP3 levels whereas OmpR stimulates PBP2SAL /PBP3SAL production. Surprisingly, despite being essential for division in E. coli, PBP3 levels also drop in non-pathogenic and pathogenic E. coli exposed to phagosome cues. Such exposure alters E. coli morphology resulting in very long bent and twisted filaments indicative of failure in the cell division and elongation machineries. None of these aberrant shapes are detected in S. Typhimurium. Expression of PBP3SAL restores cell division in E. coli exposed to phagosome cues although the cells retain elongation defects in the longitudinal axis. By switching the morphogenetic program, OmpR and Prc allow S. Typhimurium to properly divide and elongate inside acidic phagosomes maintaining its cellular dimensions and the rod shape.


Assuntos
Sinais (Psicologia) , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Fagossomos/metabolismo
9.
J Antimicrob Chemother ; 78(2): 512-520, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512374

RESUMO

BACKGROUND: Following the invasion of eukaryotic cells, Salmonella enterica serovar Typhimurium replaces PBP2/PBP3, main targets of ß-lactam antibiotics, with PBP2SAL/PBP3SAL, two homologue peptidoglycan synthases absent in Escherichia coli. PBP3SAL promotes pathogen cell division in acidic environments independently of PBP3 and shows low affinity for ß-lactams that bind to PBP3 such as aztreonam, cefepime, cefotaxime, ceftazidime, ceftriaxone, cefuroxime and cefalotin. OBJECTIVES: To find compounds with high affinity for PBP3SAL to control Salmonella intracellular infections. METHODS: An S. Typhimurium ΔPBP3 mutant that divides using PBP3SAL and its parental wild-type strain, were exposed to a library of 1520 approved drugs in acidified (pH 4.6) nutrient-rich LB medium. Changes in optical density associated with cell filamentation, a read-out of blockage in cell division, were monitored. Compounds causing filamentation in the ΔPBP3 mutant but not in wild-type strain-the latter strain expressing both PBP3 and PBP3SAL in LB pH 4.6-were selected for further study. The bactericidal effect due to PBP3SAL inhibition was evaluated in vitro using a bacterial infection model of cultured fibroblasts. RESULTS: The cephalosporin cefotiam exhibited higher affinity for PBP3SAL than for PBP3 in bacteria growing in acidified LB pH 4.6 medium. Cefotiam also proved to be effective against intracellular Salmonella in a PBP3SAL-dependent manner. Conversely, cefuroxime, which has higher affinity for PBP3, showed decreased effectiveness in killing intracellular Salmonella. CONCLUSIONS: Antibiotics with affinity for PBP3SAL, like the cephalosporin cefotiam, have therapeutic value for treating Salmonella intracellular infections.


Assuntos
Antibacterianos , Proteínas de Bactérias , Cefuroxima , Células Eucarióticas , Proteínas de Ligação às Penicilinas , Salmonella typhimurium , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Cefotiam/metabolismo , Cefotiam/farmacologia , Ceftazidima/farmacologia , Cefuroxima/farmacologia , Cefalosporinas/farmacologia , Cefalosporinas/metabolismo , Escherichia coli , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/metabolismo , Monobactamas/farmacologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
10.
Psychol Med ; 53(10): 4780-4787, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35730237

RESUMO

BACKGROUND: The brain functional correlates of delusions have been relatively little studied. However, a virtual reality paradigm simulating travel on the London Underground has been found to evoke referential ideation in both healthy subjects and patients with schizophrenia, making brain activations in response to such experiences potentially identifiable. METHOD: Ninety patients with schizophrenia/schizoaffective disorder and 28 healthy controls underwent functional magnetic resonance imaging while they viewed virtual reality versions of full and empty Barcelona Metro carriages. RESULTS: Compared to the empty condition, viewing the full carriage was associated with activations in the visual cortex, the cuneus and precuneus/posterior cingulate cortex, the inferior parietal cortex, the angular gyrus and parts of the middle and superior temporal cortex including the temporoparietal junction bilaterally. There were no significant differences in activation between groups. Nor were there activations associated with referentiality or presence of delusions generally in the patient group. However, patients with persecutory delusions showed a cluster of reduced activation compared to those without delusions in a region in the right temporal/occipital cortex. CONCLUSIONS: Performance of the metro task is associated with a widespread pattern of activations, which does not distinguish schizophrenic patients and controls, or show an association with referentiality or delusions in general. However, the finding of a cluster of reduced activation close to the right temporoparietal junction in patients with persecutory delusions specifically is of potential interest, as this region is believed to play a role in social cognition.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Delusões/diagnóstico , Esquizofrenia/complicações , Imageamento por Ressonância Magnética/métodos , Encéfalo
11.
Nucleic Acids Res ; 49(4): 2357-2374, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33638994

RESUMO

RcsB is a transcriptional regulator that controls expression of numerous genes in enteric bacteria. RcsB accomplishes this role alone or in combination with auxiliary transcriptional factors independently or dependently of phosphorylation. To understand the mechanisms by which RcsB regulates such large number of genes, we performed structural studies as well as in vitro and in vivo functional studies with different RcsB variants. Our structural data reveal that RcsB binds promoters of target genes such as rprA and flhDC in a dimeric active conformation. In this state, the RcsB homodimer docks the DNA-binding domains into the major groove of the DNA, facilitating an initial weak read-out of the target sequence. Interestingly, comparative structural analyses also show that DNA binding may stabilize an active conformation in unphosphorylated RcsB. Furthermore, RNAseq performed in strains expressing wild-type or several RcsB variants provided new insights into the contribution of phosphorylation to gene regulation and assign a potential role of RcsB in controlling iron metabolism. Finally, we delimited the RcsB box for homodimeric active binding to DNA as the sequence TN(G/A)GAN4TC(T/C)NA. This RcsB box was found in promoter, intergenic and intragenic regions, facilitating both increased or decreased gene transcription.


Assuntos
Proteínas de Bactérias/química , Regiões Promotoras Genéticas , Regulon , Salmonella typhimurium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Modelos Moleculares , Mutação , Fosforilação , Conformação Proteica , Salmonella typhimurium/metabolismo , Transcrição Gênica
12.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762708

RESUMO

Lysyl Oxidase Like 2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises five lysine tyrosylquinone (LTQ)-dependent copper amine oxidases in humans. In 2003, LOXL2 was first identified as a promoter of tumour progression and, over the course of two decades, numerous studies have firmly established its involvement in multiple cancers. Extensive research with large cohorts of human tumour samples has demonstrated that dysregulated LOXL2 expression is strongly associated with poor prognosis in patients. Moreover, investigations have revealed the association of LOXL2 with various targets affecting diverse aspects of tumour progression. Additionally, the discovery of a complex network of signalling factors acting at the transcriptional, post-transcriptional, and post-translational levels has provided insights into the mechanisms underlying the aberrant expression of LOXL2 in tumours. Furthermore, the development of genetically modified mouse models with silenced or overexpressed LOXL2 has enabled in-depth exploration of its in vivo role in various cancer models. Given the significant role of LOXL2 in numerous cancers, extensive efforts are underway to identify specific inhibitors that could potentially improve patient prognosis. In this review, we aim to provide a comprehensive overview of two decades of research on the role of LOXL2 in cancer.


Assuntos
Amina Oxidase (contendo Cobre) , Neoplasias , Animais , Camundongos , Humanos , Proteína-Lisina 6-Oxidase , Neoplasias/genética , Modelos Animais de Doenças , Regiões Promotoras Genéticas , Aminoácido Oxirredutases/genética
13.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298909

RESUMO

Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, suggesting multiple different functions for this protein. In addition, increasing knowledge about LOXL2 points to a role in several types of human cancer. Moreover, LOXL2 is able to induce the epithelial-to-mesenchymal transition (EMT) process-the first step in the metastatic cascade. To uncover the underlying mechanisms of the great variety of functions of intracellular LOXL2, we carried out an analysis of LOXL2's nuclear interactome. This study reveals the interaction of LOXL2 with numerous RNA-binding proteins (RBPs) involved in several aspects of RNA metabolism. Gene expression profile analysis of cells silenced for LOXL2, combined with in silico identification of RBPs' targets, points to six RBPs as candidates to be substrates of LOXL2's action, and that deserve a more mechanistic analysis in the future. The results presented here allow us to hypothesize novel LOXL2 functions that might help to comprehend its multifaceted role in the tumorigenic process.


Assuntos
Neoplasias , Humanos , Transição Epitelial-Mesenquimal/genética , Diferenciação Celular , Matriz Extracelular/metabolismo , Adesão Celular , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo
14.
J Bacteriol ; 204(1): e0048621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34694900

RESUMO

The survival of microbial cells under changing environmental conditions requires an efficient reprogramming of transcription, often mediated by alternative sigma factors. The Gram-positive human pathogen Listeria monocytogenes senses and responds to environmental stress mainly through the alternative sigma factor σB (SigB), which controls expression of the general stress response regulon. SigB activation is achieved through a complex series of phosphorylation/dephosphorylation events culminating in the release of SigB from its anti-sigma factor RsbW. At the top of the signal transduction pathway lies a large multiprotein complex known as the stressosome that is believed to act as a sensory hub for stresses. Following signal detection, stressosome proteins become phosphorylated. Resetting of the stressosome is hypothesized to be exerted by a putative phosphatase, RsbX, which presumably removes phosphate groups from stressosome proteins poststress. We addressed the role of the RsbX protein in modulating the activity of the stressosome and consequently regulating SigB activity in L. monocytogenes. We show that RsbX is required to reduce SigB activation levels under nonstress conditions and that it is required for appropriate SigB-mediated stress adaptation. A strain lacking RsbX displayed impaired motility and biofilm formation and also an increased survival at low pH. Our results could suggest that absence of RsbX alters the multiprotein composition of the stressosome without dramatically affecting its phosphorylation status. Overall, the data show that RsbX plays a critical role in modulating the signal transduction pathway by blocking SigB activation under nonstressed conditions. IMPORTANCE Pathogenic bacteria need to sense and respond to stresses to survive harsh environments and also to turn off the response when no longer facing stress. Activity of the stress sigma factor SigB in the human pathogen Listeria monocytogenes is controlled by a hierarchic system having a large stress-sensing multiprotein complex known as the stressosome at the top. Following stress exposure, proteins in the stressosome become phosphorylated, leading to SigB activation. We have studied the role of a putative phosphatase, RsbX, which is hypothesized to dephosphorylate stressosome proteins. RsbX is critical not only to switch off the stress response poststress but also to keep the activity of SigB low at nonstressed conditions to prevent unnecessary gene expression and save energy.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Listeria monocytogenes/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico/fisiologia , Biofilmes , Listeria monocytogenes/genética , Mutação , Fator sigma/genética
15.
Infect Immun ; 90(6): e0014922, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35536027

RESUMO

Iron is an essential oligoelement that incorporates into proteins as a biocatalyst or electron carrier. The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) takes iron as free reduced ferrous cation or as oxidized ferric cation complexed to siderophores or ferrichromes. Deficiencies in ferrous or ferric iron uptake attenuate S. Typhimurium virulence, but how the uptake systems are used in the intracellular environment remains poorly understood. Here, using S. Typhimurium mutants deficient in multiple iron uptake systems, we show that SitABCD and FeoABC, involved in ferrous iron uptake, are central for this pathogen to persist within vacuoles of fibroblasts. Assays at the protein level showed that components of these two uptake systems, SitD and FeoB, are produced at high levels by intravacuolar bacteria. Despite not being essential for viability inside the vacuole, intracellular bacteria also upregulate transporters involved in ferric iron uptake such as IroN, FepA, and CirA. In addition, an unprecedented cleavage at the N-terminal region of FepA was observed as a distinctive feature of nonproliferating intravacuolar bacteria. Collectively, our findings indicate that SitABCD and FeoABC contribute to S. Typhimurium virulence by promoting iron acquisition within the vacuolar compartment.


Assuntos
Proteínas de Bactérias , Vacúolos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cátions/metabolismo , Ferro/metabolismo , Salmonella typhimurium , Vacúolos/metabolismo
16.
Mol Microbiol ; 116(4): 1022-1032, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34342063

RESUMO

Biosynthesis and secretion of a complex extracellular matrix (EM) is a hallmark of Salmonella biofilm formation, impacting on its relationship with both the environment and the host. Cellulose is a major component of Salmonella EM. It is considered an anti-virulence factor because it interferes with Salmonella proliferation inside macrophages and virulence in mice. Its synthesis is stimulated by CsgD, the master regulator of biofilm formation in enterobacteria, which in turn is under the control of MlrA, a MerR-like transcription factor. In this work, we identified a SPI-2-encoded Salmonella-specific transcription factor homolog to MlrA, MlrB, that represses transcription of its downstream gene, orf319, and of csgD inside host cells. MlrB is induced in laboratory media mimicking intracellular conditions and inside macrophages, and it is required for intramacrophage proliferation. An increased csgD expression is observed in the absence of MlrB inside host cells. Interestingly, inactivation of the CsgD-controlled cellulose synthase-coding gene restored intramacrophage proliferation to rates comparable to wild-type bacteria in the absence of MlrB. These data indicate that MlrB represses CsgD expression inside host cells and suggest that this repression lowers the activation of the cellulose synthase. Our findings provide a novel link between biofilm formation and Salmonella virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Membrana/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Bactérias/genética , Biofilmes , Regulação Bacteriana da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Macrófagos/microbiologia , Proteínas de Membrana/genética , Camundongos , Células RAW 264.7 , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Transativadores/genética , Transcrição Gênica , Virulência , Fatores de Virulência/metabolismo
17.
Sensors (Basel) ; 22(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458936

RESUMO

The stability of the power grid's frequency is crucial for industrial, commercial, and domestic applications. The standard frequency in Europe's grid is 50 Hz and it must be as stable as possible; therefore, reliable measurement is essential to ensure that the frequency is within the limits defined in the standard EN 50160:2010. In this article, a method has been introduced for the measurement of the grid frequency through a power line harmonics radiation analysis. An extremely low-frequency magnetometer was developed with the specific purpose of monitoring, in real time, the electromagnetic field produced by electrical installations in the range from 0 to 2.2 kHz. Zero-crossing and Fast Fourier transform algorithms were applied to the output signal to calculate the grid frequency as a non-invasive method. As a final step, data for a complete month (May 2021) were compared with a commercial power quality analyzer connected to the main line to validate the results. The zero-crossing algorithm gave the best result on 3 May 2021, with a coefficient of determination (R2) of 0.9801. Therefore, the indirect measurement of the grid frequency obtained through this analysis satisfactorily fits the grid frequency.

18.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628534

RESUMO

Lysyl oxidase-like 2 (LOXL2) and 3 (LOXL3) are members of the lysyl oxidase family of enzymes involved in the maturation of the extracellular matrix. Both enzymes share a highly conserved catalytic domain, but it is unclear whether they perform redundant functions in vivo. In this study, we show that mice lacking Loxl3 exhibit perinatal lethality and abnormal skeletal development. Additionally, analysis of the genotype of embryos carrying double knockout of Loxl2 and Loxl3 genes suggests that both enzymes have overlapping functions during mouse development. Furthermore, we also show that ubiquitous expression of Loxl2 suppresses the lethality associated with Loxl3 knockout mice.


Assuntos
Aminoácido Oxirredutases , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Animais , Desenvolvimento Embrionário , Matriz Extracelular/metabolismo , Feminino , Genes Letais , Camundongos , Camundongos Knockout , Gravidez
19.
Mol Microbiol ; 113(3): 613-626, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32185832

RESUMO

The peptidoglycan (PG), as the exoskeleton of most prokaryotes, maintains a defined shape and ensures cell integrity against the high internal turgor pressure. These important roles have attracted researchers to target PG metabolism in order to control bacterial infections. Most studies, however, have been performed in bacteria grown under laboratory conditions, leading to only a partial view on how the PG is synthetized in natural environments. As a case in point, PG metabolism and its regulation remain poorly understood in symbiotic and pathogenic bacteria living inside eukaryotic cells. This review focuses on the PG metabolism of intracellular bacteria, emphasizing the necessity of more in vivo studies involving the analysis of enzymes produced in the intracellular niche and the isolation of PG from bacteria residing within eukaryotic cells. The review also points to persistent infections caused by some intracellular bacterial pathogens and the extent at which the PG could contribute to establish such physiological state. Based on recent evidences, I speculate on the idea that certain structural features of the PG may facilitate attenuation of intracellular growth. Lastly, I discuss recent findings in endosymbionts supporting a cooperation between host and bacterial enzymes to assemble a mature PG.


Assuntos
Células Eucarióticas/microbiologia , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Simbiose , Virulência
20.
Appl Environ Microbiol ; 87(12): e0039721, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811030

RESUMO

Listeria monocytogenes is a ubiquitous environmental bacterium and intracellular pathogen that responds to stress using predominantly the alternative sigma factor SigB. Stress is sensed by a multiprotein complex, the stressosome, extensively studied in bacteria grown in nutrient media. Following signal perception, the stressosome triggers a phosphorylation cascade that releases SigB from its anti-sigma factor. Whether the stressosome is activated during the intracellular infection is unknown. Here, we analyzed the subcellular distribution of stressosome proteins in L. monocytogenes located inside epithelial cells following their immunodetection in membrane and cytosolic fractions prepared from intracellular bacteria. Unlike bacteria in laboratory media, intracellular bacteria have a large proportion of the core stressosome protein RsbR1 associated with the membrane. However, another core protein, RsbS, is undetectable. Despite the absence of RsbS, a SigB-dependent reporter revealed that SigB activity increases gradually from early (1 h) to late (6 h) postinfection times. We also found that RsbR1 paralogues attenuate the intensity of the SigB response and that the miniprotein Prli42, reported to tether the stressosome to the membrane in response to oxidative stress, plays no role in associating RsbR1 to the membrane of intracellular bacteria. Altogether, these data indicate that, once inside host cells, the L. monocytogenes stressosome may adopt a unique configuration to sense stress and to activate SigB in the intracellular eukaryotic niche. IMPORTANCE The response to stress mediated by the alternative sigma factor SigB has been extensively characterized in Bacillus subtilis and Listeria monocytogenes. These bacteria sense stress using a supramacromolecular complex, the stressosome, which triggers a cascade that releases SigB from its anti-sigma factor. Despite the fact that many structural data on the complex are available and analyses have been performed in mutants lacking components of the stressosome or the signaling cascade, the integration of the stress signal and the dynamics of stressosome proteins following environmental changes remain poorly understood. Our study provides data at the protein level on essential stressosome components and SigB activity when L. monocytogenes, normally a saprophytic bacterium, adapts to an intracellular lifestyle. Our results support activation of the stressosome complex in intracellular bacteria. The apparent loss of the stressosome core protein RsbS in intracellular L. monocytogenes also challenges current models, favoring the idea of a unique stressosome architecture responding to intracellular host cues.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Listeria monocytogenes/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico , Linhagem Celular , Proliferação de Células , Células Eucarióticas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA